Robustly quasiconvex function

Bui Thi Hoa

Centre for Informatics and Applied Optimization, Federation University Australia

May 21, 2018
Convex functions

1. All lower level sets are convex.
2. Each local minimum is a global minimum.
3. Each stationary point is a global minimizer.
Generalised Convexity

Definition

A function $f : X \to \overline{\mathbb{R}}$, with a convex $\text{dom}f$, is called **quasiconvex** if for all $x, y \in \text{dom}f$, and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}.$$
Generalised Convexity

Definition
A function $f : X \rightarrow \mathbb{R}$, with a convex dom$f$, is called **quasiconvex** if for all $x, y \in \text{dom} f$, and $\lambda \in [0, 1]$ we have

$$f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}.$$

Definition
f is called **explicitly quasiconvex** if it is quasiconvex and for all $\lambda \in (0, 1)$

$$f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\}, \quad \text{with } f(x) \neq f(y).$$
Generalised Convexity

Definition
A function \(f : X \to \mathbb{R} \), with a convex \(\text{dom} f \), is called **quasiconvex** if for all \(x, y \in \text{dom} f \), and \(\lambda \in [0, 1] \) we have
\[
f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}.
\]

Definition
\(f \) is called **explicitly quasiconvex** if it is quasiconvex and for all \(\lambda \in (0, 1) \)
\[
f(\lambda x + (1 - \lambda)y) < \max\{f(x), f(y)\}, \quad \text{with } f(x) \neq f(y).
\]

Example
1. \(f_1 : \mathbb{R} \to \mathbb{R}; \ f_1(x) = 0, \ x \neq 0; f_1(0) = 1. \)
2. \(f_2 : \mathbb{R} \to \mathbb{R}; \ f_2(x) = 1, \ x \neq 0; f_2(0) = 0. \)
3. Convex functions are quasiconvex, and explicitly quasiconvex.
4. \(f(x) = x^3 \) are quasiconvex, and explicitly quasiconvex, but not convex.
Definition

A Gâteaux differentiable function $f : X \rightarrow \mathbb{R}$, with a convex $\text{dom} f$, is called \textit{pseudoconvex} if for $x, y \in \text{dom} f$,

$$f(x) < f(y) \Rightarrow \langle \nabla f(y), x - y \rangle < 0.$$
Pseudoconvex function

Definition

A Gâteaux differentiable function $f : X \rightarrow \mathbb{R}$, with a convex dom$f$, is called **pseudoconvex** if for $x, y \in \text{dom} f$,

$$f(x) < f(y) \Rightarrow \langle \nabla f(y), x - y \rangle < 0.$$

Example

$f : \mathbb{R} \rightarrow \mathbb{R}, f(x) = \int_{-1}^{x} t \sin(1/t) dt + x^2$. f is pseudoconvex but not stable.
Pseudoconvex function

Definition

A Gâteaux differentiable function $f : X \to \mathbb{R}$, with a convex $\text{dom} f$, is called pseudoconvex if for $x, y \in \text{dom} f$,

$$f(x) < f(y) \Rightarrow \langle \nabla f(y), x - y \rangle < 0.$$

Example

$f : \mathbb{R} \to \mathbb{R}, f(x) = \int_{-1}^{x} t \sin(1/t)dt + x^2$. f is pseudoconvex but not stable.
Quasiconvexity satisfies (1), not (2), (3), and explicitly quasiconvexity satisfies (1), (2), not (3).

Pseudoconvexity satisfies (3).

These three properties are not stable w/r to three generalized convex properties.
Robust quasiconvexity

X–Banach space.

Definition

For $\alpha > 0$, a function $f : X \to \overline{\mathbb{R}}$ is called α–robustly quasiconvex if, for every $v^* \in \alpha B^*$, the function $f_{v^*} : v \mapsto f(x) + \langle v^*, x \rangle$ is quasiconvex.
X–Banach space.

Definition

For $\alpha > 0$, a function $f : X \to \bar{\mathbb{R}}$ is called α–robustly quasiconvex if, for every $v^* \in \alpha \mathbb{B}^*$, the function $f_{v^*} : v \mapsto f(x) + \langle v^*, x \rangle$ is quasiconvex.

A function is called s–quasiconvex if there is $\alpha > 0$ such that f is α–robustly quasiconvex.
Robust quasiconvexity

X–Banach space.

Definition

For $\alpha > 0$, a function $f : X \to \mathbb{R}$ is called α–robustly quasiconvex if, for every $v^* \in \alpha B^*$, the function $f_{v^*} : v \mapsto f(x) + \langle v^*, x \rangle$ is quasiconvex.

A function is call s–quasiconvex if there is $\alpha > 0$ such that f is α–robustly quasiconvex.

1. s–quasiconvex functions satisfy (1), (2), (3).
2. Consequently, these three properties are stable under a small linear perturbation.
3. A lower semicontinuous α–robustly quasiconvex function are not necessary continuous in its int dom.
Robust quasiconvexity

X–Banach space.

Definition

For $\alpha > 0$, a function $f : X \to \overline{\mathbb{R}}$ is called α–robustly quasiconvex if, for every $v^* \in \alpha B^*$, the function $f_{v^*} : v \mapsto f(x) + \langle v^*, x \rangle$ is quasiconvex.

A function is called α–quasiconvex if there is $\alpha > 0$ such that f is α–robustly quasiconvex.

1. α–quasiconvex functions satisfy (1), (2), (3).

2. Consequently, these three properties are stable under a small linear perturbation.

3. A lower semicontinuous α–robustly quasiconvex function are not necessary continuous in its int dom.

Theorem (J.-P. Crouzeix, 1977)

A function $f : X \to \overline{\mathbb{R}}$ is convex provided all its linear perturbations $f + x^*$, $x^* \in X^*$ are quasiconvex.
Convex subdifferential set of φ at \bar{x}

$$\partial \varphi(\bar{x}) := \{ x^* \in X^* : \varphi(x) - \varphi(\bar{x}) \geq \langle x^*, x - \bar{x} \rangle, \forall x \in X \}.$$
Dual Characterization: subdifferentials

X— normed vector space, $\varphi : X \rightarrow \bar{\mathbb{R}}$, $\bar{x} \in X$

Convex subdifferential set of φ at \bar{x}

$$\partial \varphi(\bar{x}) := \{ x^* \in X^* : \varphi(x) \geq \langle x^*, x - \bar{x} \rangle, \forall x \in X \}.$$

Fréchet subdifferential set of φ at \bar{x}

$$\partial^F \varphi(\bar{x}) := \left\{ x^* \in X^* : \liminf_{x \rightarrow \bar{x}} \frac{\varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\| x - \bar{x} \|} \geq 0 \right\}.$$
Dual Characterization: subdifferentials

X— normed vector space, $\varphi : X \to \overline{\mathbb{R}}, \bar{x} \in X$

Convex subdifferential set of φ at \bar{x}

$$\partial \varphi(\bar{x}) := \{x^* \in X^* : \varphi(x) - \varphi(\bar{x}) \geq \langle x^*, x - \bar{x} \rangle, \forall x \in X \}.$$

Fréchet subdifferential set of φ at \bar{x}

$$\partial^F \varphi(\bar{x}) := \left\{ x^* \in X^* : \liminf_{x \to \bar{x}} \frac{\varphi(x) - \varphi(\bar{x}) - \langle x^*, x - \bar{x} \rangle}{\|x - \bar{x}\|} \geq 0 \right\}.$$

Theorem

1. **φ is convex, then**
 $$\partial^F \varphi(x) = \partial \varphi(x), \quad x \in X.$$

2. **$x^* \in \partial^F \varphi(x)$ if and only if there exists a function $g : X \to \mathbb{R}$ such that**
 1. $g(x) = \varphi(x)$, and $g(y) \leq \varphi(y)$ for all $y \in X$.
 2. g is Fréchet differentiable at x, and $\nabla g(x) = x^*$.

3. **\bar{x} is a local minimum of φ, then**
 $$0 \in \partial^F \varphi(\bar{x}).$$
Examples

\[\varphi(x) = \begin{cases} \max\{0, x \sin(1/x)\} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases} \]
Examples

\[\varphi(x) = \begin{cases}
\max\{0, x \sin(1/x)\} & \text{if } x \neq 0; \\
0 & \text{if } x = 0.
\end{cases} \]

\[\partial^F \varphi(0) = \{0\}; \text{ but } \varphi \text{ is not differentiable at } 0. \]
Examples

$X = \mathbb{R}^2$ and $\varphi : X \to \mathbb{R}$

$$\varphi(x) = |x_1| - |x_2|, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$
Examples

$X = \mathbb{R}^2$ and $\varphi : X \to \mathbb{R}$

$$\varphi(x) = |x_1| - |x_2|, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$
An operator $F : X \rightrightarrows X^*$ is called **monotone** if

$$\langle v^* - u^*, v - u \rangle \geq 0,$$

for all $u, v \in X$ and $u^* \in F(u), v^* \in F(v)$.

F is **maximal monotone** if there is no monotone operator that properly contains it.
Definition

An operator $F : X \rightrightarrows X^*$ is called **monotone** if

$$\langle v^* - u^*, v - u \rangle \geq 0,$$

for all $u, v \in X$ and $u^* \in F(u), v^* \in F(v)$.

F is **maximal monotone** if there is no monotone operator that properly contains it.

Theorem (Rockafellar (1970))

If φ is convex, then $\partial F \varphi$ is maximal monotone.
A Banach space X is said to be **Asplund** if every continuous convex function defined on a nonempty open convex subset D of X is Fréchet differentiable at each point of some dense set $G_δ$ subset of D.

Theorem

If X is Asplund, $f : X → \overline{\mathbb{R}}$, then f is convex if and only if ∂Ff is monotone.

X is NOT Asplund if and only if there is a proper l.s.c function $ϕ : X → \overline{\mathbb{X}}$ with $\partial Fϕ$ is monotone, but not convex.

Lemma (Lemma of three points)

Let $ϕ : X → \mathbb{R}$ be a proper, l.s.c on Asplund space X. Let $u, v, w ∈ X$ with $v ∈ [u, w]$, $ϕ(v) > ϕ(u)$. Then, there exist $c ∈ [u, v)$ and two sequences $x_k \rightarrow c$, and $x_k^* ∈ ∂ Fϕ(x_k)$ such that $⟨ x_k^*, w − x_k ⟩ > 0 \forall k ∈ \mathbb{N}$.

(Ausel, 1988) $∂^−$ smooth renorm space.
Asplund space

Definition

A Banach space X is said to be **Asplund** if every continuous convex function defined on a nonempty open convex subset D of X is Fréchet differentiable at each point of some dense set G_δ subset of D.

Theorem

X is Asplund, $f : X \rightarrow \bar{\mathbb{R}}$. Then f is convex if and only if $\partial^F f$ is monotone.
Asplund space

Definition
A Banach space X is said to be Asplund if every continuous convex function defined on a nonempty open convex subset D of X is Fréchet differentiable at each point of some dense set $G_δ$ subset of D.

Theorem
X is Asplund, $f : X \rightarrow \bar{\mathbb{R}}$. Then f is convex if and only if $\partial^F f$ is monotone.

X is NOT Asplund if and only if there is a proper l.s.c function $\varphi : X \rightarrow \bar{X}$ with $\partial^F \varphi$ is monotone, but not convex.
Asplund space

Definition

A Banach space X is said to be Asplund if every continuous convex function defined on a nonempty open convex subset D of X is Fréchet differentiable at each point of some dense set $G_δ$ subset of D.

Theorem

X is Asplund, $f : X \to \bar{\mathbb{R}}$. Then f is convex if and only if $\partial F f$ is monotone.

X is NOT Asplund if and only if there is a proper l.s.c function $\varphi : X \to \bar{X}$ with $\partial F \varphi$ is monotone, but not convex.

Lemma (Lemma of three points)

Let $\varphi : X \to \bar{\mathbb{R}}$ be a proper, l.s.c on Asplund space X. Let $u, v, w \in X$ with $v \in [u, w]$, $\varphi(v) > \varphi(u)$. Then, there exist $c \in [u, v)$, and two sequences $x_k \xrightarrow{\varphi} c$, and $x_k^* \in \partial F \varphi(x_k)$ such that

$$\langle x_k^*, w - x_k \rangle > 0 \quad \forall k \in \mathbb{N}.$$

(Ausel, 1988) ∂—smooth renorm space.
Quasiconvex function-Quasimonotone operator

Definition

An operator $F : X \rightarrow X^*$ is quasimonotone if

$$\langle u^*, v - u \rangle > 0 \Rightarrow \langle v^*, v - u \rangle \geq 0$$

for all $u, v \in X$ and $u^* \in F(u), v^* \in F(v)$.

Monotone \implies Quasimonotone.
Definition

An operator $F : X \ni X^*$ is **quasimonotone** if

$$\langle u^*, v - u \rangle > 0 \Rightarrow \langle v^*, v - u \rangle \geq 0$$

for all $u, v \in X$ and $u^* \in F(u), v^* \in F(v)$.

Monotone \implies Quasimonotone.

Theorem

Let $\varphi : X \to \overline{\mathbb{R}}$ be a proper, l.s.c function on a Banach space X. Consider the following statements

(a) φ is quasiconvex;
(b) $\varphi(y) \leq \varphi(x) \implies \langle x^*, y - x \rangle \leq 0 \quad \forall x^* \in \partial F \varphi(x)$.
(c) $\partial^F \varphi$ is quasimonotone.

Then, (a)\Rightarrow(b) \iff (c).
Definition

An operator \(F : X \rightarrow X^* \) is **quasimonotone** if

\[
\langle u^*, v - u \rangle > 0 \Rightarrow \langle v^*, v - u \rangle \geq 0
\]

for all \(u, v \in X \) and \(u^* \in F(u), v^* \in F(v) \).

Theorem

Let \(\varphi : X \rightarrow \mathbb{R} \) be a proper, l.s.c function on a Banach space \(X \). Consider the following statements

(a) \(\varphi \) is quasiconvex;

(b) \(\varphi(y) \leq \varphi(x) \Rightarrow \langle x^*, y - x \rangle \leq 0 \quad \forall x^* \in \partial^F \varphi(x) \).

(c) \(\partial^F \varphi \) is quasimonotone.

Then, (a)\(\Rightarrow \)(b) \(\iff \) (c). Moreover, if \(X \) is an Asplund space then (c)\(\Rightarrow \)(a).
Definition

An operator \(F : X \rightrightarrows X^* \) is quasimonotone if

\[
\langle u^*, v - u \rangle > 0 \Rightarrow \langle v^*, v - u \rangle \geq 0
\]

for all \(u, v \in X \) and \(u^* \in F(u), v^* \in F(v) \).

Monotone \(\Longrightarrow \) Quasimonotone.

Theorem

Let \(\varphi : X \to \bar{\mathbb{R}} \) be a proper, l.s.c function on a Banach space \(X \). Consider the following statements

(a) \(\varphi \) is quasiconvex;
(b) \(\varphi(y) \leq \varphi(x) \Rightarrow \langle x^*, y - x \rangle \leq 0 \ \forall x^* \in \partial^F \varphi(x) \).
(c) \(\partial^F \varphi \) is quasimonotone.

Then, (a)\(\Rightarrow \) (b) \(\iff \) (c). Moreover, if \(X \) is an Asplund space then (c)\(\Rightarrow \) (a).

If \(X \) is NOT Asplund, we can always find a proper l.s.c function that satisfies (c), (b); but not (a).
Let \(\varphi : X \to \overline{\mathbb{R}} \) be a proper, l.s.c function on a Banach space \(X \), and \(\alpha > 0 \). Consider the following statements

(a) \(\varphi \) is \(\alpha \)-robustly quasiconvex;

(b) For every \(x, y \in X \)

\[
\varphi(y) \leq \varphi(x) \implies \langle x^*, y - x \rangle \leq -\min \{ \alpha \|y - x\|, \varphi(x) - \varphi(y) \}, \quad \forall x^* \in \partial^F \varphi(x).
\]

Then, (a) \(\implies \) (b).
Theorem

Let \(\varphi : X \rightarrow \overline{\mathbb{R}} \) be a proper, l.s.c function on a Banach space \(X \), and \(\alpha > 0 \). Consider the following statements

(a) \(\varphi \) is \(\alpha \)-robustly quasiconvex;

(b) For every \(x, y \in X \)

\[
\varphi(y) \leq \varphi(x) \implies \langle x^*, y - x \rangle \leq -\min \{ \alpha \|y - x\|, \varphi(x) - \varphi(y) \},
\]

\(\forall x^* \in \partial^F \varphi(x) \).

Then, (a) \(\Rightarrow \) (b). Moreover, if \(X \) is an Asplund space then (b) \(\Rightarrow \) (a).

Theorem

Let \(\varphi : X \rightarrow \overline{\mathbb{R}} \) be proper, l.s.c on an Asplund space \(X \) and \(\alpha \geq 0 \). Then, \(\varphi \) is \(\alpha \)-robustly quasiconvex if and only if for any \(x, y \in X \) and \(x^* \in \partial^F \varphi(x), y^* \in \partial^F \varphi(y) \), we have

\[
\min \{ \langle x^*, y - x \rangle, \langle y^*, x - y \rangle \} > -\alpha \|y - x\| \implies \langle x^* - y^*, x - y \rangle \geq 0.
\]
Robustly quasiconvex functions

1. All lower level sets are convex.
2. Each local minimum is a global minimum.
3. Each stationary point is a global minimizer.
THANK YOU!