Worksheet 4.2 Empirical and molecular formula calculations

NAME:

CLASS:

INTRODUCTION

The **empirical formula** of a compound is defined as the simplest whole-number ratio of atoms of the elements in the compound.

The **molecular formula** of a compound is defined as the actual number of atoms of elements covalently bonded in a molecule, and is a whole-number ratio of the empirical formula. The **percentage composition** of a compound can be determined from its formula or from experimental mass proportion data.

No.	Question	Answer
1	Titanium oxide, TiO ₂ , is widely used as a pigment in high-quality artists' paints due to its brilliant white colour. Determine the percentage composition of TiO ₂ .	
2	Calculate the percentage by mass of each element present in the following compounds. a Fe ₂ O ₃ b Na ₂ S ₂ O ₃ c Ba(HSO ₄) ₂	
3	An oxide of sulfur contains 60% oxygen. Determine the empirical formula of the compound.	
4	A group 1 metal chloride contains 47.6% chlorine. What is the formula of this ionic compound?	

 Page 1

 © Pearson Education Australia (a division of Pearson Australia Group Pty Ltd) 2008.

 This page from the Chemistry: For use with the IB Diploma Programme SL Teacher's Resource may be reproduced for classroom use.

Worksheet 4.2 Empirical and molecular formula calculations

No.	Question	Answer
5	Write empirical formulas for each of the following. a CH ₄ b N ₂ H ₄ c H ₂ SO ₄ d C ₂ H ₄ O ₂	
6	Write the chemical formulas of three molecules that have an empirical formula of CH ₂ .	
7	A molecule has an empirical formula C ₂ H ₄ O and a relative molecular mass of 88. What is its molecular formula?	
8	0.300 mole of a sample of a hydrocarbon is found to have a mass of 24.6 g. If the empirical formula of the compound is C ₃ H ₅ , determine its molecular formula.	
9	A student is given a 2.486 g sample of a purple crystalline solid. Upon analysis it is found to consist of potassium (0.614 g), manganese (0.863 g) and oxygen (1.006 g). Determine the empirical formula of the compound.	
10	A compound undergoes analysis to establish the following elemental composition: Carbon: 40.0% Hydrogen: 6.67% Oxygen: 53.3% If the compound, known as a carbohydrate, has a molecular mass of approximately 60, determine both its empirical and molecular formulas.	