Worksheet 1.2 Calculation of relative masses

NAME:

CLASS:

INTRODUCTION

The determination of relative atomic mass is important, as it represents an element accurately.

No.	Question		Answer			
1	Complete the table.					
	Term Relative atomic mass	Definition		Symbol		
	Relative isotopic mass					
	Percentage abundance					
2	Explain why the relative carbon is 12.01, even the (mass of exactly 12) is standard on which relate determined.	re atomic mass of hough carbon used as the tive mass is				
3	The element sulfur has ³² S, ³³ S and ³⁴ S. If their masses and percentage 31.97 (95.0%), 32.97 ((4.23%) respectively, d relative atomic mass of	three isotopes: relative isotopic abundances are 0.77%) and 33.97 letermine the Sulfur.				

© Pearson Education Australia (a division of Pearson Australia Group Pty Ltd) 2008. This page from the Chemistry: For use with the IB Diploma Programme SL Teacher's Resource may be reproduced for classroom use.

Page 1

Worksheet 1.2 Calculation of relative masses

No.	Question			Answer
4	A certain element has two isotopes of relative isotopic masses x and $x + 4$. If the abundance of each isotope is the same, calculate the relative atomic mass of this element (in terms of x).			
5	Calculate th zinc, given shown belo	he relative that it has ow.	atomic mass of five isotopes as	
	Isotope	<i>I</i> r	% abundance	
	⁶⁴ Zn	63.93	48.89	
	⁶⁶ Zn	65.93	27.81	
	⁶⁷ Zn	66.93	4.11	
	⁶⁸ Zn	67.93	18.57	
	⁷⁰ Zn	69.93	0.62	
6	Bromine ha 79.91. It ha 78.92 and p and ⁸¹ Br. D abundance of the secon	as a relative s two isoto percentage petermine b and the rel nd isotope.	e atomic mass of opes: ⁷⁹ Br of I_r abundance 50.54%, ooth the percentage ative isotopic mass	
7	Calculate the relative molecular mass of each of the following compounds. a Hydrogen perchlorate (HOCl) b Ammonium sulfate ((NH ₄) ₂ SO ₄) c Urea ((NH ₂) ₂ CO) d Hydrogen peroxide (H ₂ O ₂)			
8	Calculate the relative formula mass of each of the following compounds. a Lead(IV) oxide (PbO ₂) b Aluminium iodide (AlI ₃) c Calcium carbonate (CaCO ₃) d Lithium sulfide (Li ₂ S)			

Worksheet 1.2 Calculation of relative masses

No.	Question	Answer
9	An oxide of nitrogen has a relative molecular mass of 46.01. What is the formula of this oxide?	
10	Tin exists as +2 and +4 ions in its compounds. Determine the relative formula masses of the two possible tin chlorides.	

© Pearson Education Australia (a division of Pearson Australia Group Pty Ltd) 2008. This page from the Chemistry: For use with the IB Diploma Programme SL Teacher's Resource may be reproduced for classroom use.

Page 3