Using a graphic display calculator

CHAPTER OBJECTIVES:

This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course. You should not work through the whole of the chapter – it is simply here for reference purposes. When you are working on problems in the mathematical chapters, you can refer to this chapter for extra help with your GDC if you need it.

GDC instructions on CD: The instructions in this chapter are for the TI-Nspire model. Instructions for the same techniques using the TI-84 Plus and the Casio FX-9860GII are available on the CD.

Chapter contents

1	F	un	ctions
	-	-	01

1.1	Graphing linear functions	572
Findi	ng information about the graph	
1.2	Finding a zero	572
1.3	Finding the gradient	
	(slope) of a line	573
Simu	ltaneous equations	
1.4	Solving simultaneous	
	equations graphically	574
1.5	Solving simultaneous	
	linear equations	576
Quad	ratic functions	
1.6	Drawing a quadratic	
	graph	577
1.7	Solving quadratic equations	578
1.8	Finding a local minimum	
	or maximum point	579
Ехро	nential functions	
1.9	Drawing an exponential	
	graph	583
1.10	Finding a horizontal	
	asymptote	584

Logarithmic functions

2

1.11	Evaluating logarithms	585
1.12	Finding an inverse function	585
1.13	Drawing a logarithmic graph	588
Trigo	nometric functions	
1.14	Degrees and radians	589
1.15	Drawing trigonometric	
	graphs	590
More	complicated functions	
1.16	Solving a combined quadratic and	
	exponential equation	591
Mode	ling	
1.17	Using sinusoidal regression	592
1.18	Using transformations to	
	model a quadratic function	594
1.19	Using sliders to model an	
	exponential function	596
Diffe	rential calculus	
Findi	ng gradients, tangents and	
maxi	num and minimum points	
2.1	Finding the gradient at a point	598
2.2	Drawing a tangent to a curve	599

	2.3	Finding maximum and	
		minimum points	600
	Deriv	atives	
	2.4	Finding a numerical derivative	602
	2.5	Graphing a numerical	
		derivative	603
	2.6	Using the second derivative	605
3	Integ	ral calculus	
	3.1	Finding the value of an	
		indefinite integral	606
	3.2	Finding the area under a curve	607
4	Vecto	ors	
	4.1	Calculating a scalar product	608
	4.2	Calculating the angle between	
		two vectors	610
5	Stati	stics and probability	
	Enter	ring data	
	5.1	Entering lists of data	612
	5.2	Entering data from a	
		frequency table	612
	Draw	ing charts	
	5.3	Drawing a frequency	
		histogram from a list	613
	5.4	Drawing a frequency histogram	
		from a frequency table	614

5.5	Drawing a box and whisker	
	diagram from a list	614
5.6	Drawing a box and whisker	
	diagram from a frequency table	616
Calcu	lating statistics	
5.7	Calculating statistics from a list	617
5.8	Calculating statistics	
	from a frequency table	618
5.9	Calculating the interquartile	
	range	619
5.10	Using statistics	620
Calcu	llating binomial probabilities	
5.11	Use of nCr	621
5.12	Calculating binomial probabilities	622
Calcu	llating normal probabilities	
5.13	Calculating normal probabilities	
	from X-values	624
5.14	Calculating X-values	
	from normal probabilities	625
Scatt	ter diagrams, linear regression	
and t	he correlation coefficient	
5.15	Scatter diagrams using a	
	Data & Statistics page	627
5.16	Scatter diagrams using a	
	Graphs page	629

Before you start

You should know:

- Important keys on the keyboard: (, menu, es, tab, ett shift, enter, del
- The home screen
- Opening new documents, adding new pages, changing settings
- Moving between pages in a document
- Panning and grabbing axes to change a window in a Graphs page
- Change window settings in a Graphs page
- Using zoom tools in a Graphs page
- Using trace in a Graphs page
- Setting the number of significant figures or decimal places

1 Functions

1.1 Graphing linear functions

Example 1

Finding information about the graph

Your GDC can give you a lot of information about the graph of a function, such as the coordinates of points of interest and the gradient (slope).

1.2 Finding a zero

The x-intercept is known as a zero of the function.

1.3 Finding the gradient (slope) of a line

The correct mathematical notation for gradient (slope) is $\frac{dy}{dx}$, and this is how the GDC denotes gradient.

Simultaneous equations

1.4 Solving simultaneous equations graphically

To solve simultaneous equations graphically you draw the straight lines and then find their point of intersection. The coordinates of the point of intersection give you the solutions x and y.

For solving simultaneous equations using a non-graphical method, see section 1.5.

Example 4

```
Use a graphical method to solve the simultaneous equations

2x + y = 10

x - y = 2

First rewrite both equations in the form 'y ='.

2x + y = 10

y = 10 - 2x

y = x - 2

The GDC will only draw the graphs of functions

that are expressed explicitly, 'y =' as a

function of x. If the equations are written in

a different form, you need to rearrange them

before using your GDC to solve them.
```


1.5 Solving simultaneous linear equations

When solving simultaneous equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The GDC will do all the working for you. You do not need the equations to be written in any particular format to use the linear equation solver, as long as they are both *linear*, that is, neither equation contains x² or higher order terms.

Solve the equations: 2x + y = 10 x - y = 2	
Open a new document and add a Calculator page.	Solve a System of Linear Equations
 Press menu 3:Algebra 2:Solve Systems of Linear Equations Press enter You will see this dialogue box, showing 2 equations and two variables, x and y. Note: This is how you will use the linear equation solver in your examinations. In your project, you might want to solve a more complicated system with more equations and more variables. 	Number of equations Variables: x.y Enter variable names separated by commas OK Cancel
	Continued on next page

Quadratic functions

1.6 Drawing a quadratic graph

Example 6

Chapter 17 / 577

Grab the *x*-axis and change it to make the quadratic curve fit the screen better.

For help with changing axes, see your GDC manual.

1.7 Solving quadratic equations

When solving quadratic equations in an examination, you do not need to show any method of solution. You should simply write out the equations in the correct form and then give the solutions. The GDC will do all the working for you.

Example 7

1.8 Finding a local minimum or maximum point

Example 9

Chapter 17 / 581

Exponential functions

1.9 Drawing an exponential graph

1.10 Finding a horizontal asymptote

Logarithmic functions

1.11 Evaluating logarithms

Example 12

Evaluate $\log_{10} 3.95$, $\ln 10.2$ and $\log_5 2$.		
Open a new document and add a Calculator page. Press cttl log to open the log template.	<1.1 ≥ log (3.95)	Functions - 4
Enter the base and the argument then press enter dell For natural logarithms it is possible to use the same method, with the base equal to <i>e</i> , but it is far less time	$\frac{\ln(10.2)}{\log_5(2)}$	2.32239 0.430677
Note that the GDC will evaluate logarithms with any base without having to use the change of base formula.		k 199 3/99

1.12 Finding an inverse function

The inverse of a function can be found by interchanging the *x* and *y* values. Geometrically this can be done by reflecting points in the line y = x.

1.13 Drawing a logarithmic graph

Trigonometric functions

1.14 Degrees and radians

Work in trigonometry will be carried out either in degrees or radians. It is important, therefore, to be able to check which mode the calculator is in and to be able to switch back and forth. On the TI-Nspire, there are three separate settings to make: general, graphing and geometry. The defaults for general and graphing are radians and for geometry the default is degrees. Geometry is only used for drawing plane geometrical figures. Normally the two important settings are general and graphing. General refers to the angle used in calculations and graphing is for drawing trigonometric graphs.

1.15 Drawing trigonometric graphs

More complicated functions

1.16 Solving a combined quadratic and exponential equation

Example 17

Follow the same GDC procedure when solving simultaneous equations graphically or solving a combined quadratic and exponential equation. See Examples 4 and 17.

Modeling

1.17 Using sinusoidal regression

Note: the notation $\sin^2 x$, $\cos^2 x$, $\tan^2 x$, ... is a mathematical convention that has little algebraic meaning. To enter these functions on the GDC, you *should* enter $(\sin(x))^2$, etc. However, the calculator will conveniently interpret $\sin(x)^2$ and translate it as $(\sin(x))^2$.

Example 18

lowing data can be modeled using a sine curve.	be modeled using	ita can b	following d	hat the	nown t	It
2 3 4 5 6 7	5 6 7	4	2 3	1	0	
9 6.7 9.2 8.3 6.5 8.9	8.3 6.5 8.	9.2	7.9 6.7	9.4	6.9	
ind a function to model this data.	model this data.	ction to	to find a fur	ression	ine reg	U
and add a Lists & Spreadsheet page. and 'y' in the cell to its right. the x-list in the first column and the second. o navigate around the spreadsheet. 1 9.4 2 7.9 3 6.7 4 9.2 At 0	t Spreadsheet pag to its right. irst column and the spreadsheet.	a Lists & the cell in the fi d. e around	nt and add ell and 'y' i om the x-lis in the secon s to navigat	documo ne first o nbers fr ne y-list	a new x' in the the number of the number of the	O _I Ty Ty tho Us
ew graphs page to your document.	o your document	s page t	a new grap	nd add	😭 On a	Pr
pe Scatter Plot ved at the bottom of the work area. layed. lists, x and y, into the scatter plot ve from x to y. 5.57 10	of the work area o the scatter plot	atter Plo bottom d y, into to y.	Type 6 :S blayed at the isplayed. he lists, x as nove from x	:Graph e is dis ype is d nes of key to	menu 3 enter ntry lin r plot t the nan on ne tab enter	Pro Pro Th Sca En fun Us Pro
ttings to show your data and the x- 1.2 Functions \checkmark	ur data and the <i>x</i> -	how yo	settings to	window	t your	Ad
plot of x against y. $\begin{bmatrix} 12 & y \\ y \\ y \end{bmatrix}$	у.	against	ter plot of a	e a scar	axes. ow hav	an Yo
					-	
the Lists & Spreadsheet page. d press menu 4:Statistics Stat bidal Regression enus choose 'x' for X List and 'y' for is tab to move between the fields. B Period: (optional) Category List OK Cancel	adsheet page. atistics Stat or X List and 'y' f etween the fields.	& Spre enu 4:St ression ose 'x' fo move be	a to the List and press usoidal Reg menus cho ress tab to	o return oty cell C:Sin p down hould j	ctrl dt an emp lations enter the dro . You s enter	Pro Sel Ca Pro Fro Y Pro
Ithe Lists & Spreadsheet page. I press menu 4:Statistics Stat Didal Regression Enus choose 'x' for X List and 'y' for Is to move between the fields. Save RegEqn to: f1 Iterations: 8 Period: (optional) Category List Continued on next	adsheet page. atistics Stat or X List and 'y' f etween the fields.	& Spre enu 4:St ression ose 'x' fo move be	n to the List and press usoidal Reg menus cho ress tab to	o retur oty cell C:Sin p down hould p	ctrl 41 an emplations enter the dro . You s enter	Pro Sei Ca Pro Fro Y Pro

1.18 Using transformations to model a quadratic function

You can also model a linear function by finding the equation of the least squares regression line (see section 5.15).

> Transform a basic quadratic curve to find an equation to fit some quadratic data.

Example 19

Th	is data	is app	proxima	ately co	nnected	l by a	quadrat	tic function
x	-2	-1	0	1	2	3	4	5-15
y	9.1	0.2	-4.8	-5.9	-3.1	4.0	15.0	

Find a function that fits the data.

Open a new document and add a Lists & Spreadsheet page. Enter the data in two lists:

Type 'x' in the first cell and 'y' in the cell to its right.

Enter the *x*-values in the first column and the *y*-values in the second. Remember to use it to enter a negative number.

Use the $\checkmark \land \diamondsuit$ keys to navigate around the spreadsheet.

Continued on next page

Add a Graphs page to your document. Press menu 3:Graph Type 4:Scatter Plot Press enter The entry line is displayed at the bottom of the work area. Scatter plot type is displayed. Enter the names of the lists, x and y, into the scatter plot function. Use the tab key to move from x to y. Press enter Press menu A:Zoom – Fit from the Window/Zoom menu	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
This is a quick way to choose an appropriate scale to show all the points. You should recognize that the points are in the shape of a quadratic function.	-2.5 -8 (x,y)
The next step is to enter a basic quadratic function, $y = x^2$, and manipulate it to fit the points. Press menu 3:Graph Type 1:Function Press enter This changes the graph type from scatter plot to function. Type x^2 in as function $fI(x)$. It is clear that the curve does not fit any of the points, but it is the right general shape to do so.	Quadratic Quadratic $f1(x)=x^2$ $f(x)=x^2$
Use the touchpad to move the cursor so it approaches the curve. You will see one of two icons. The first will allow you to drag the quadratic function around the screen by its vertex. The second allows you to stretch the function either vertically or horizontally.	or graph f1
Use \leftrightarrow to position the vertex where you think it ought to be according to the data points.	Int 1.2 Puadratic Puadraticontentettetee Puadratic Puadratic

1.19 Using sliders to model an exponential function

You can now adjust the sliders to get a much better fit to the curve. The screen shows the value of k is 0.5 and c is 3. So the best fit for the equation of the function is approximately $y = 0.5(1.5)^{x} + 3$.

2 Differential calculus

Finding gradients, tangents and maximum and minimum points

2.1 Finding the gradient at a point

Example 21

2.2 Drawing a tangent to a curve

Use the touchpad to drag the arrows at each end of the tangent line to extend it. Press cut menu with the tangent line selected – move to the arrow at the end and look for the word 'line'. Choose 7:Coordinates and Equations Click on the line to display the equation of the tangent: y = -2.83x + 5.97. Click on the point to display the coordinates of the point: (-0.559, 7.55).

2.3 Finding maximum and minimum points

Derivatives

2.4 Finding a numerical derivative

Using the calculator it is possible to find the numerical value of any derivative for any value of x. The calculator will not, however, differentiate a function algebraically. This is equivalent to finding the gradient at a point graphically (see Section 2.1 example 21).

2.5 Graphing a numerical derivative

Although the calculator can only evaluate a numerical derivative at a point, it will graph the gradient function for all values of x.

Find the values of x on the curve $y = \frac{x^3}{3} + x^2 - 5x + 1$ where	the gradient is 3.
Open a new document and add a Graphs page. The entry line is displayed at the bottom of the work area. The default graph type is Function, so the form " $fl(x) =$ " is displayed. The default axes are $-10 \le x \le 10$ and $-6.67 \le y \le 6.67$.	$\begin{array}{c c} \hline \hline \hline \\ \hline \hline \\ $
Press the templates button marked and choose the numerical derivative.	
In the template enter x and the function $\frac{x^3}{3} + x^2 - 5x + 1$. Press enter.	$ fi(x) = \frac{d}{d[]}([]) $
The calculator displays the graph of the numerical derivative function of $y = \frac{x^3}{3} + x^2 - 5x + 1$.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Using the touchpad, click on \bigcirc to open the entry line at the bottom of the work area. Enter the function $f 2(x) = 3$ Press enter The calculator now displays the curve and the line $y = 3$.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Press menu 7:Points & Lines 3:Intersection Point(s) Using the touchpad, select graph f 1 and graph f 2. The calculator displays the coordinates of the intersection points of the gradient function and the line y = 3. The curve has gradient 3 when $x = -4$ and $x = 2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

2.6 Using the second derivative

The calculator can find first and second derivatives. The second derivative can be used to determine whether a point is a maximum or minimum point.

3 Integral calculus

The calculator can find the values of definite integrals either on a calculator page or graphically. The calculator method is quicker, but the graphical method is clearer and shows discontinuities, negative areas and other anomalies that can arise.

3.1 Finding the value of an indefinite integral

Example 28

3.2 Finding the area under a curve

4 Vectors

4.1 Calculating a scalar product

Example 30

continued on next page

You can also enter vectors as rows by typing them in directly instead of using the templates. Separate the values in the vector with commas. When you press enter, the GDC changes the entry line and calculates the result.		
		9
This method can be quicker, especially with 3×1 vectors.	√ 1.1 ▷ Vectors ▼ dotP([1 -1 4],[3 2 -1]) ↓	-3

4.2 Calculating the angle between two vectors

The angle θ between two vectors **a** and **b**, can be calculated using the formula

$$\theta = \arccos\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$$

5 Statistics and probability

You can use your GDC to draw charts to represent data and to calculate basic statistics such as mean, median, etc. Before you can do this, you need to enter the data into a list or spreadsheet. This is done in a Lists & Spreadsheet page in your document.

Entering data

There are two ways of entering data: as a list or as a frequency table.

5.1 Entering lists of data

Example 32

Enter the data in the list 1, 1, 3, 9, 2 Open a new document and add a Lists & Spreadsheet page. (1.1 D Desc Stats data Type 'data' in the first cell. Type the numbers from the list in the first column. 1 Press enter or \checkmark after each number to move down to the next 1 cell. 3 Note: The word 'data' is a label that will be used later when 9 you want to create a chart or do some calculations with this 2 data. You can use any letter or name to label the list. <> A5 2

5.2 Entering data from a frequency table

Example 33

Enter the data in a table						
Number	1	2	3	4	5	
Frequency	3	4	6	5	2	

Add a new Lists & Spreadsheet page to your document.

To label the columns, type 'number' in the first cell and 'freq' in the cell to its right.

Enter the numbers in the first column and the frequencies in the second.

Drawing charts

You can draw charts from a list or from a frequency table.

5.3 Drawing a frequency histogram from a list

5.4 Drawing a frequency histogram from a frequency table

Example 35

Draw a frequency histogram for this data:Number12345Frequency34652	
Enter the data in lists called 'number' and 'freq' (see Example 33). Add a new Data & Statistics page to your document. Note: You do not need to worry about what this screen shows. Men 2 Plor Marter 7: Remove X Vonable A: Remove Y Vonable	 1.2 1.3 1.4 ▷ Desc Stats ▼ Caption: data ageurs ppe 0 ageurs provide the state of the st
Press menu 2:Plot Properties 5:Add X Variable with Frequency Press enter You will see this dialogue box. From the drop-down menus, choose 'number' for the Data List and 'freq' for the Frequency List. Press enter	1.2 1.3 1.4 ▷ Desc State Image: Sta
You should now see a frequency histogram for the data in the table.	 1.2 1.3 1.4 Desc Stats ▼ 1.4 Desc Stats ™ 1.4 Desc Stats

5.5 Drawing a box and whisker diagram from a list

Draw a box and whisker diagram for this data: 1, 1, 3, 9, 2	
	Continued on next page

5.6 Drawing a box and whisker diagram from a frequency table **Example 37**

Calculating statistics

You can calculate statistics such as mean, median, etc. from a list, or from a frequency table.

5.7 Calculating statistics from a list

Example 38

Statistics... Press enter

Press enter

Calculate the summary statistics for this data: 1, 1, 3, 9, 2 Enter the data in a list called 'data' (see Example 32). One-Variable Statistics Add a new Calculator page to your document. Press menu 6:Statistics | 1:Stat Calculations | 1:One-Var Num of Lists: This opens a dialogue box. ance Leave the number of lists as 1 and press enter This opens another dialogue box. One-Variable Statistics Choose 'data' from the drop-down menu for X1 X1 List dat V List and leave the Frequency List as 1. Frequency List V Category List Include Categories: V OK Cancel

The information shown will not fit on a single screen. You can scroll up and down to see it all. The statistics calculated for the data are:

mean	\overline{x}
sum	$\sum x$
sum of squares	$\sum x^2$
sample standard deviation	Sx
population standard deviation	σ_{x}

1.1 1.2 0	Desc Stats 💌	
OneVar data, 1: s	tat.results	
"Title"	"One-Variable St	atistics
"\\"	- 3.2	
"∑x" '	16.	
"∑x*"	96.	
"SX := Sn-1X"	3.34664	П
"OX := OnX"	2.99333	
"n"	5.	*
"MinX"	1.	
4	h	1/99

Continued on next page

Mean, median, range, quartiles, standard

deviation, etc. are

called summary statistics.

number	n	4 1.1 1.2 D Desc	Stats 🕶	<pre>All</pre>
minimum value lower quartile median upper quartile maximum value sum of squared deviations from the mean	$MinX$ Q_1X $MedianX$ Q_3X $MaxX$ SSX	" $\sigma x := \sigma_{A} x^{"}$ " $n^{"}$ "Min X" " $Q_{1} X^{"}$ "Median X" " $Q_{2} X^{"}$ "Max X" "SSX := $\Sigma (x - \bar{x})^{2}$ "	2.99333 5. 1. 1. 2. 6. 9. 44.8	1/99
Note: You should always use the potential deviation (σ_x) in this course.	population standard	- and - and		

5.8 Calculating statistics from a frequency table

Example 39

Calculate the summary statistics for this data:	
Number 1 2 3 4 5	
Frequency 3 4 6 5 2	
Enter the data in lists called 'number' and 'freq' (see Example 33). Add a new Calculator page to your document. Press menu 6:Statistics 1:Stat Calculations 1:One-Var Statistics Press enter This opens a dialogue box. Leave the number of lists as 1 and press enter.	One-Variable Statistics Num of Lists: 1 🔶 OK Cancel
This opens another dialogue box. From the drop-down menus, choose 'number' for X1 List and 'freq' for the Frequency List. Press enter	One-Variable Statistics X1 List number ♥ Frequency List ♥ Category List ♥ Include Categories: ♥ OK Cancel
The information shown will not fit on a single screen. You can scroll up and down to see it all. The statistics calculated for the data are: $\begin{array}{c} \text{mean} & \overline{x} \\ \text{sum} & \Sigma x \\ \text{sum of squares} & \Sigma x^2 \\ \text{sample standard deviation} & s_x \end{array}$	11 12 1.3 Desc State ✓ ▲★ OneVar number, freq: stat. results "Title" "One-Variable Statistics "X" 2.95 "X" "Sx" 59. "X" "Sx" 1.23438 "ox := onx" 1.20312 "n" 20. "MinX" 1.

618 Using a graphic display calculator

The information shown will not fi	t on a single screen.	41.1 1.2 1.3 Des	Stais 🕶 🚺	
You can scroll up and down to see	OneVar number freq: si	ni.results		
The statistics calculated for the day	to one:	"Title" "C	ne-Variable Statistics	5
The statistics calculated for the da	la ale.	"\Z"	2.95	1/1C-CHU
		¹¹ ΣX ¹¹ μ _Σ , ₂₂ μ	59.	
		"SX := Sp-1X"	1.23438	
population standard deviation	σ_{x}	"OX := OnX"	1.20312	
number	n	"n"	20.	•
minimum value	Min Y	"MinX"	1.	<u>N</u>
inimitum value		<u>k</u> 1	/99	
lower quartile	$Q_1 X$	-		
median	MedianX	<1.1 1.2 1.3 > Des	Stats 🐨 📲	×
upper quartile	OX	$" \sigma \mathbf{X} := \sigma \mathbf{x} \mathbf{X}"$	1.20312	ñ
upper quartie	2311	"D"	20.	
maximum value	MaxX	"O1X"	2.	
sum of squared deviations	SSX	"MedianX"	3.	1
from the mean		"Q ₂ X"	4.	
nom the mean		"MaxX"	5.	
		$\frac{["SSX] = \Sigma (X - X)^{2}"}{!}$	28.95	-
Note: You should always use the po			No.	
deviation (σ) in this course.	L	R	199	

5.9 Calculating the interquartile range

Example 40

The interquartile range is the difference between the upper and lower quartiles $(Q_3 - Q_1)$.

Calculate the	inter	quart	ile ra	inge f	for thi	data:
Number	1	2	3	4	5	
Frequency	3	4	6	5	2	
First calculate see Example The values of Variable Sta- until the nex add a new C Press var	e the s 38). If the s sistics t time alcula	summ have they a	hary s been are c age t	statis tatist calcula alcula	tics fo lics an ulated ated. ur doc	this data stored after One- and remain stored the stat. results $\frac{9}{12}$ stat. n $\frac{9}{12}$ stat. n $\frac{9}{12}$ stat. sx $\frac{10}{12}$ stat. sx $\frac{10}{12}$ stat. sx $\frac{10}{12}$ stat. sx $\frac{10}{12}$ stat. xat $\frac{9}{12}$ stat. xx $\frac{9}{12}$ stat. $\frac{10}{12}$ stat. $\frac{10}{$
A dialogue bo ariables. Scroll down t nd then pres	ox wil o stat s ente	1 appo . <i>q</i> ₃ x u r	ear w	vith the to	he nar ouchp	these of the statistical d , or the $\neg \land$ keys,
Type (→) and Scroll down t the ▼ ▲ keys	press to stat , and	var $a_1 x$ u then j	again sing press	n. the t enter	ouchr	ad, or 1.1 1.2 $1.$

Press enter again. The calculator now displays the result: Interquartile range = $Q_3 - Q_1 = 3$

1.1 1.2	1.3 Desc Stats 🕶	
stat. Q2X-s	stat.QzX	3.
1	k	

5.10 Using statistics

Example 41

Calculate $\overline{x} + \sigma_x$ for this data:	The calculator stores the values you
Number 1 2 3 4 5 Frequency 3 4 6 5 2	calculate in One-Variable Statistics so that you can access them in other calculations. The values are stored until you do another One-Variable Statistics calculation
First calculate the summary statistics for this data (see Example 38). Add a new Calculator page to your document. Press var A dialogue box will appear with the names of the statistical variables. Scroll down to stat. \bar{x} using the touchpad, or the $\neg \triangle$ keys, and then press enter.	Image: Stat: Thrm Image: Stat: Q=X Image: Stat: Q=X Image: Stat: Q=X Image: Q=X Image: Q=X
Type and press var again. Scroll down to stat. σx using the touchpad, or the \neg \land keys, and then press enter.	12 1 ² / ₂ Stat. Π stat. R+ P ₂ stat. q ₁ x P ₂ stat. q ₂ x H stat. results P ₂ stat. s ₂ x H stat. stat P ₂ stat. x ₂ H stat. values P ₂ stat. X H stat. ZX H stat. ZX N stat. X
Press enter again. The calculator now displays the result: $\bar{x} + \sigma_x = 4.15$ (to 3 sf)	4 1.2 1.3 1.4 Desc Stats ▼ ▲ × stat. X+stat. ox 4.15312

Calculating binomial probabilities

5.11 The use of nCr

Example 42

Find the value of $\binom{8}{3}$ (or ${}_{8}C_{3}$)Open a new document and add a Calculator page.Press menu 5:Probability | 3:CombinationsAlternatively you can just type \mathbb{N} \mathbb{C} \mathbb{P} \mathbb{C} .There is no need to worry about upper or lower case, the
calculator recognises the key sequence and translates it
accordingly.Type 8,3
Press enter

Example 43

Continued on next page

1/99

5.12 Calculating binomial probabilities

X is a discrete random variable and X~B (9, 0.75) Calculate P(X = 5) $P(x = 5) = {9 \choose 5} 0.75^5 0.25^4$ The calculator can find this value directly	
Open a new document and add a Calculator page. Press menu 5:Probability 3:Probability 5:Distributions D:Binomial Pdf Enter the number of trials, probability of success and the X value. Click on OK	Binomial Pdf Num Trials, n: 9 Prob Success, p: 0.75 X Value: 5 OK Cancel
The calculator shows that P ($X = 5$) = 0.117 (to 3 sf) You can also type the function straight in without using the dialogue box.	4 1.1 ▷ Prob & Stats ▼

X is a discrete random variable and $X \sim B(7, 0.3)$ Calculate the probabilities that X takes the values {0, 1, 2, 3	5, 4, 5, 6, 7}
Open a new document and add a Calculator page. Press menu 5:Probability 3:Probability 5:Distributions D:Binomial Pdf Enter the number of trials, probability of success and leave the X value blank. Click on OK	Binomial Pdf Num Trials, n: 7 Prob Success, p: 0.3 X Value: (optional) OK Cancel
The calculator displays each of the probabilities. To see the remaining values scroll the screen to the right. The list can also be transferred to a Lists & Spreadsheet page.	I.1 Prob & Stats ▼ II ImomPdf(7,0.3) {0.082,0.247,0.318,0.227,0.097,0.025,0.00* ImomPdf(7,0.3) ImomPdf(7,0.318,0.227,0.097,0.025,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.318,0.227,0.097,0.00* ImomPdf(7,0.20* I
To store the list in a variable named "prob" type: prob:=binomPdf(7,0.3) or use the dialogue box as you did before. Use ctf := to enter :=	I.1 ▷ Prob & Stats ▼
Press n and add a new Lists & Spreadsheet page At the top of the first column type prob Press enter The binomial probabilities are now displayed in the first column.	Image: Problement of the state Image: Problement of the state problement of the state Image: Problement of the state problement of the state Image: Problement of the state 0.082354 Image: Problement of the state 0.097241 Image: Problement of the state Image: Problement of the state Image: Problement of the state

Example 46

Calculating normal probabilities

5.13 Calculating normal probabilities from X-values

 A random variable X is normally distributed with a mean of X ~ N(195, 20²). Calculate a the probability that X is less than 190 b the probability that X is greater than 194 c the probability that X lies between 187 and 196. 	f 195 and a standard deviation of 20, or
Open a new document and add a Calculator page. Press ment 5:Probability 5:Distributions 2:Normal Cdf Press enter You need to enter the values Lower Bound, Upper Bound, μ and σ in the dialogue box. For the Lower Bound, enter -9×10^{999} as $-9E999$. This is the smallest number that can be entered in the GDC, so it is used in place of $-\infty$. To enter the E, you need to press the key marked \bigotimes .	Normal Cdf Lower Bound: -ЭЕЭЭЭЭ ♥ Upper Bound: ♥
	Continued on next page

a	P(<i>X</i> < 190)	<	11.1 0	Stats Apps 🔻	4 X
	Leave the Lower Bound as -9E999.	Γ	normCdf(-9.E	999,190,195,20)	0.401294
	Change the Upper Bound to 190.	-	normCdf(194,	9.E999,195,20)	0.519939
	Change μ to 195 and σ to 20.	-	normCdf(187,	196,195,20)	0.175361
	P(X < 190) = 0.401 (to 3 sf)	-	Anna Arren		
b	P(X > 194)			k	
	Change the Lower Bound to 194.				
	For the Upper Bound, enter 9×10^{999} as 9E999. This is				
	the largest number that can be entered in the GDC, so	1			
	it is used instead of $+\infty$. Leave μ as 195 and σ as 20.		It can be q	uicker to type th	ne function
	P(X > 194) = 0.520 (to 3 sf)		directly int	o the calculator,	without
С	P(187 < <i>X</i> < 196)		using the r	menus and the v	wizard,
	Change the Lower Bound to 187 and the Upper Bound		but there a	are a lot of param	meters to
	to 196; leave μ as 195 and σ as 20.		remember	for the function	normCdf.
	P(187 < X < 196) = 0.175 (to 3 sf)	-			

5.14 Calculating X-values from normal probabilities

When using the inverse normal function (invNorm), make sure that you find the probability on the correct side of the normal curve. The areas are always the lower tail, that is, they are of the form P(X < x) (see Example 48).

If you are given the upper tail, P(X > x), you must first subtract the probability from 1 to before you can use invNorm (see Example 49).

b, if $P(X < x) = 0.4$ then $x = 72.0$) (to 3 sf).	4 1.2 1.3 1.4 > *Stats App	· • @
		invNorm(0.4,75,12)	71.9598
			4
		k	

Example 49

A random variable X is normally distributed with a mean of 75 and a standard deviation of 12, or $X \sim N(75, 12^2)$. If $P(X > x) = 0.2$, find the value of x.	You are given an <i>upper</i> -tail probability, so you must first find P(X < x) = 1 - 0.2 = 0.8. You can now use the invNorm function as before.
Open a new document and add a Calculator page. Press menu 5:Probability 5:Distributions 3:Inverse Normal Press enter Enter the probability (area = 0.8), mean (μ = 75) and standard deviation (σ = 12) in the dialogue box.	Inverse Normal Area: 0.8
So, if $P(X > x) = 0.2$ then $x = 85.1$ (to 3 sf).	1.2 1.3 1.4 ▷ Stats Apps ▼

Scatter diagrams, linear regression and the correlation coefficient

5.15 Scatter diagrams using a Data & Statistics page

Using a Data & Statistics page is a quick way to draw scatter graphs and find the equation of a regression line.

Example 50

This data is approximately connected by a linear function.

x	1.0	2.1	2.4	3.7	5.0
y	4.0	5.6	9.8	10.6	14.7

Find the equation of the least squares regression line for y on x.

Use the equation to predict the value of y when x = 3.0.

Open a new document and add a Lists & Spreadsheet page. Enter the data in two lists:

Type 'x' in the first cell and 'y' in the cell to its right.

Enter the *x*-values in the first column and the *y*-values in the second.

×	У		
1.	4		
2.1	5.6		
2.4	9.8		
3.7	10.6		
5.	14.7		10
B5 14.7	k	ka sa	: >

Scatter *

3.7

21

2.4

Click to add variable

Scatter *

<1.1 ₽

4 1.1 1.2 D

Click to add variable

Caption: x

35

01

Press and add a new Data & Statistics page. **Note**: You do not need to worry about what this screen shows.

Click at the bottom of the screen where it says 'Click to add variable', choose 'x' from the list and press enter.

Continued on next page

For Pearson's product– moment correlation coefficient, see section 5.16, Scatter diagrams using a Graphs page.

XI X

1 X

5.16 Scatter diagrams using a Graphs page

Using a Graphs page takes a little longer than the Data & Statistics page, but you will get more detailed information about the data such as Pearson's product–moment correlation coefficient.

Example 51

	This data	a is approximately	connected by a	linear function.
--	-----------	--------------------	----------------	------------------

x	1.0	2.1	2.4	3.7	5.0
у	4.0	5.6	9.8	10.6	14.7

- a Find the equation of the least squares regression line for y on x.
- **b** Find Pearson's product-moment correlation coefficient.

c Predict the value of y when x = 3.0.

This is the same data as in Example 50.

Chapter 17 629

Open a new document and add a Lists & Spreadsheet page. Enter the data in two lists: Type 'x' in the first cell and 'y' in the cell to its right. Enter the x-values in the first column and the y-values in the second. Use the ▼ ▲ ♠ keys to navigate around the spreadsheet.	Image: 1.1 Scatter x y 1. 4 2.1 5.6 2.4 9.8 3.7 10.6 5. 14.7
 Press and add a new Graphs page to your document. Press mena 3:Graph Type Scatter Plot Press enter The entry line is displayed at the bottom of the work area. Scatter plot type is displayed. Enter the names of the lists, x and y, into the scatter plot function. Use the tab key to move from x to y. Press enter 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Adjust your window settings to show the data and the <i>x</i> - and <i>y</i> -axes. You now have a scatter plot of <i>x</i> against <i>y</i> .	1.1 1.2 ▷ Scatter ▼ 16 y 16 y <
Press ctd \triangleleft to return to the Lists & Spreadsheet page. Press menu 4:Statistics 1:Stat Calculations 3:Linear Regression ($mx + b$) Press enter From the drop-down menus, choose 'x' for X List and 'y' for Y List. You should press tab to move between the fields. Press enter	Linear Regression (mx+b) X List 'x Y List y Save RegEqn to: f1 Frequency List 1 Category List V Include Categories: V OK Cancel

On the screen, you will see the result of the linear regression in lists next to the lists for x and y. The values of m (2.6282) and b (1.47591) are shown separately.

a The equation of the least squares regression line for y on x is y = 2.6282x + 1.47591.

			У	x y
M	=LinRegN			
3.	Linear Re.	Title	4	1
	m*x+b	RegEqn	5.6	2.1
2	2.6282	m	9.8	2.4
1	1.47591	b	10.6	3.7
3	0.91153	r ²	14.7	5

Scroll down the table to see the value of Pearson's productmoment correlation coefficient, given by r.

b Pearson's product–moment correlation coefficient, r = 0.954741.

X	E,	/	2	8
•				=LinRegM
	2.1	5.6	RegEqn	m*x+b
3	2.4	9.8	m	2.6282
4	3.7	10.6	b	1.47591
5	5	14.7	r ²	0.91153
5			r	0.954741

Press ctrl > to return to the Graphs page. Using the touchpad, click on (to open the entry line at the bottom of the work area.

You will see that the equation of the regression line has been pasted into fl(x).

Press enter,

The regression line is now shown on the graph. Use the trace function menu 5:Trace | 1:Graph Trace to find the point where x is 3.0.

Using the \blacktriangleright keys, move the trace point close, then edit the *x*-coordinate and change it to exactly 3.0.

c When x = 3.0, y = 9.36.

