2019 Integral Calculus non calc test markscheme

1a.

appropriate approach (M1)

eg
$$2\int f(x), 2(8)$$

$$\int_1^6 2f(x)\mathrm{d}x = 16$$
 A1 N2

[2 marks]

1b.

appropriate approach (M1)

eg $\int f(x) + \int 2, \ 8 + \int 2$

 $\int 2 \mathrm{d}x = 2x$ (seen anywhere) (A1)

substituting limits into **their** integrated function and subtracting (in any order) (M1)

eg
$$2(6)-2(1),\ 8+12-2$$
 $\int_{1}^{6}\left(f(x)+2
ight)\mathrm{d}x=18$ A1 N3

[4 marks]

2.

(a) METHOD 1

choosing quotient rule

$$eg = \frac{vu' - uv'}{v^2}$$

$$(\ln x)' = \frac{1}{x}$$
, seen in rule (A1)

correct substitution into the quotient rule

$$eg \quad \frac{x \times \frac{1}{x} - \ln x \times 1}{x^2}$$

$$g'(x) = \frac{1 - \ln x}{x^2}$$
 A1 N4

METHOD 2

choosing product rule (M1) $eg \quad uv' + vu'$

one correct derivative, seen in rule

$$eg \quad (\ln x)' = \frac{1}{x}, \ -x^{-2}$$

correct substitution into the product rule (1) 1 $\ln x$

eg
$$\ln x(-x^{-2}) + x^{-1}(\frac{1}{x}), \ \frac{1}{x^2} - \frac{\ln x}{x^2}$$

 $g'(x) = \frac{1 - \ln x}{x^2}$ A1 N4
[4 marks]

(b) attempt to use substitution or inspection

eg
$$u = \ln x$$
 so $\frac{du}{dx} = \frac{1}{x}$, $\int u \, du$

$$\int g(x)dx = \frac{(\ln x)^2}{2} + C \quad (\text{accept absence of } +C)$$

[3 marks]

Ν3

Total [7 marks]

(M1)

(A1)

(A1)

(A1)

(M1)

3.

evidence of anti-differentiation (M1)

$$eg \; \int (6\mathrm{e}^{2t}+t) \ s = 3\mathrm{e}^{2t}+rac{t^2}{2}+C \;\;$$
 A2A1

Note: Award A2 for $3\mathrm{e}^{2t}$, A1 for $\frac{t^2}{2}$.

attempt to substitute (0, 10) into their integrated expression (even if C is missing) (M1)

correct working (A1)

eg~~10=3+C , C=7

$$s = 3\mathrm{e}^{2t} + rac{t^2}{2} + 7$$
 A1 N6

Note: Exception to the *FT* rule. If working shown, allow full *FT* on incorrect integration which must involve a power of **e**.

[7 marks]

4.

```
correct integration, 2 	imes rac{1}{2} \ln(2x+5) A1A1
Note: Award A1 for 2 	imes rac{1}{2} (=1) and A1 for \ln(2x+5).
```

evidence of substituting limits into integrated function and subtracting (M1) e.g. $\ln(2 \times 5 + 5) - \ln(2 \times 0 + 5)$ correct substitution A1 e.g. $\ln 15 - \ln 5$ correct working (A1) e.g. $\ln \frac{15}{5}$, $\ln 3$ k = 3 A1 N3 [6 marks]

(b) attempt to use substitution or inspection $eg \quad u = \ln x \text{ so } \frac{du}{dx} = \frac{1}{x}, \int u \, du$ $\int g(x) dx = \frac{(\ln x)^2}{2} + C \text{ (accept absence of } +C)$ [3 marks]

Total [7 marks]

5. (a) attempt to find quarter circle area (M1)

eg
$$\frac{1}{4}(4\pi)$$
, $\frac{\pi r^2}{4}$, $\int_0^2 \sqrt{4-x^2} dx$
area of region = π (A1)
 $\int_0^2 f(x) dx = -\pi$ A2 N3
[4 marks]

(b) attempted set up with both regions (M1)

 $_{eg}\;\;{
m shaded}\;{
m area-quarter}\;{
m circle}$, $3\pi-\pi$, $3\pi-\int_{0}^{2}f=\int_{2}^{6}f$

$$\int_2^6 f(x) \mathrm{d}x = 2\pi$$
 A2 N2

[3 marks]

Total [7 marks]

6a.

correct integration A1A1

e.g.
$$rac{x^2}{2} - 4x$$
, $\left[rac{x^2}{2} - 4x
ight]_4^{10}$, $rac{(x-4)^2}{2}$

Notes: In the first 2 examples, award *A1* for each correct term.

In the third example, award A1 for $rac{1}{2}$ and A1 for $(x-4)^2$.

substituting limits into **their** integrated function and subtracting (in any order) (M1)

e.g.
$$\left(\frac{10^2}{2} - 4(10)\right) - \left(\frac{4^2}{2} - 4(4)\right), 10 - (-8), \frac{1}{2}(6^2 - 0)$$

 $\int_4^{10} (x - 4) dx = 18$ A1 N2

attempt to substitute either limits or the function into volume formula (M1)

e.g. $\pi \int_{4}^{10} f^2 \mathrm{d}x, \int_{a}^{b} \left(\sqrt{x-4}
ight)^2, \pi \int_{4}^{10} \sqrt{x-4}$

Note: Do not penalise for missing π or dx.

correct substitution (accept absence of dx and π) (A1)

e.g. $\pi \int_{4}^{10} (\sqrt{x-4})^2$, $\pi \int_{4}^{10} (x-4) dx$, $\int_{4}^{10} (x-4) dx$ volume = 18π A1 N2

[3 marks]

Printed for St Leonard's College

© International Baccalaureate Organization 2019

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®

6b.