CALCULATING ANGLES

TASK 1

Angles about a point

Without using a protractor, find the size of the marked angles using the sum of the angles about a point.

![Diagram](image)

TASK 2

Vertically opposite angles

Without using a protractor, find the size of the marked angles using vertically opposite angles.

![Diagram](image)
TASK 3

Angles that form a straight angle

Without using a protractor, find the size of the marked angles using the sum of the angles that form a straight angle.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What do you notice about the angle outside the triangle and the two acute angles inside?

TASK 4

Mixing them up

A letter can be used to stand for the size of the angle. In each of these diagrams, find the number that each different letter represents.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABCD is a rectangle and the lines are diagonals of that rectangle.