Inverse functions

- Inverse functions graphs
- Inverse functions rules
- Inverse functions from equations
- Finding inverse functions one to one.

Inverse functions - graphs

- Every one to one function has an inverse function, $f^{-1}(x)$.
- Knowing about inverses helps to work backwards & solve equations.
- The graph of an inverse function can be found from mirroring the original graph around the line y = x.
- The domain of the inverse $f^{-1}(x)$ is the range of f(x).
- The range of the inverse $f^{-1}(x)$ is the domain of f(x).
- The x intercept of $f^{-1}(x)$ is the y intercept of f(x).
- The y intercept of $f^{-1}(x)$ is the x intercept of f(x).
- A horizontal asymptote for f(x) produces a vertical asymptote for $f^{-1}(x)$.
- A vertical asymptote for f(x) produces a horizontal asymptote for f⁻¹(x).

Inverse functions - from equations

- Let $f:[a,\infty) \rightarrow R$, where $f(x)=x^2-6x$.
- If a is the smallest real number such that f has an inverse function, find the value of a and the inverse f⁻¹(x).
- This is a quadratic function (many to one).
- Either side of the turning point, the function will be one to one.

Finding inverse functions - one to one.

Finding a: $y = x^{2} - 6x$ $y = x^{2} - 6x + 9 - 9$ $y = (x - 3)^{2} - 9$ a = 3 $f: [3, \infty) \to R, x^{2} - 6x$

Finding the inverse: $x = (y-3)^{2} - 9$ $x+9 = (y-3)^{2}$ $\sqrt{x+9} = y-3$ $y = \sqrt{x+9} + 3$ $f: [-9,\infty) \rightarrow \mathcal{R}, \sqrt{x+9} + 3$