Inverse functions

- Inverse functions - graphs
- Inverse functions - rules
- Inverse functions - from equations
- Finding inverse functions - one to one.

Inverse functions - graphs

Inverse functions - rules

- Every one to one function has an inverse function, $f^{1}(x)$.
- Knowing about inverses helps to work backwards \& solve equations.
- The graph of an inverse function can be found from mirroring the original graph around the line $y=x$.
- The domain of the inverse $f^{-1}(x)$ is the range of $f(x)$.
- The range of the inverse $f^{-1}(x)$ is the domain of $f(x)$.
- The x intercept of $f^{1}(x)$ is the y intercept of $f(x)$.
- The y intercept of $f^{1}(x)$ is the x intercept of $f(x)$.
- A horizontal asymptote for $f(x)$ produces a vertical asymptote for $f^{1}(x)$.
- A vertical asymptote for $f(x)$ produces a horizontal asymptote for $f^{-1}(x)$.

Inverse functions - from equations

Finding inverse functions - one to one.

- Let $f:[a, \infty) \rightarrow R$, where $f(x)=x^{2}-6 x$.
- If a is the smallest real number such that fhas an inverse function, find the value of a and the inverse $f^{-1}(x)$.
- This is a quadratic function (many to one).
- Either side of the turning point, the function will be one to one.

Finding inverse functions - one to one.

Finding a:
$y=x^{2}-6 x$
$y=x^{2}-6 x+9-9$
$y=(x-3)^{2}-9$
$a=3$
$f:[3, \infty) \rightarrow R, x^{2}-6 x$

Finding the inverse:

$$
\begin{aligned}
& x=(y-3)^{2}-9 \\
& x+9=(y-3)^{2} \\
& \sqrt{x+9}=y-3 \\
& y=\sqrt{x+9}+3 \\
& f:[-9, \infty) \rightarrow R, \sqrt{x+9}+3
\end{aligned}
$$

