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Abstract

In this paper, we develop a stochastic mixed integer programming model to

optimise the tactical master surgery schedule (MSS) in order to achieve a better

patient flow under downstream capacity constraints. We optimise the process

over several scheduling periods and we use various sequences of randomly gen-

erated patients’ length of stay scenario realisations to model the uncertainty in

the process. This model has the particularity that the scenarios are chrono-

logically sequential, not parallel. We use a very simple approach to enhance

the non-anticipative feature of the model, and we empirically demonstrate that

our approach is useful in achieving the desired objective. We use simulation to

show that the most frequently optimal schedule is the best schedule for imple-

mentation. Furthermore, we analyse the effect of varying the penalty factor, an

input parameter that decides the trade-off between the number of cancellations

and occupancy level, on the patient flow process. Finally, we develop a robust

MSS to maximise the utilisation level while keeping the number of cancellations

within acceptable limits.
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1. Introduction

A major challenge for the healthcare industry in Australia and across the world

is to keep up with the growing demand for services. In Australia, public hos-

pitals maintain elective surgery waiting lists, and hospital management aims to

maximise the number of operations performed.

In order to achieve this goal, we need to analyse and optimise patient flow

in the surgical suite in such a way that we can get maximum throughput. Some

researchers have modeled patient flow as a queuing network, (see Côté [7]).

However, there are many disadvantages in modelling elective patient flow as a

queuing network. First, the elective patient arrival process is under manage-

ment’s control, and it can be adjusted to obtain better patient flow. Second,

there are some operational restrictions on the arrival process, for example no

elective patients are operated on during weekends or holidays, whereas down-

stream resources are still available. Although we can develop a discrete event

simulation model to analyse the elective patient flow process, it is difficult to

schedule elective patients’ operations optimally in order to obtain a better pa-

tient flow. In simulation models, we select an arrival process and a service

process, and we observe the behaviour of the system. We may improve the

system by adjusting the arrival process intuitively or with simulation optimisa-

tion techniques (see Figueira and Lobo [8]), but it can be difficult to obtain the

optimal arrival process.

To develop a deterministic optimal schedule, we can model the patient flow

process as a flow shop scheduling problem where each patient represents a job,

each set of resources represents a machine, and a patient’s length of stay (LoS)

represents its service time, (see Pham and Klinkert [13]). However, as we discuss

below, there are some important aspects of the patient flow process that are

difficult to capture in a flow shop model. As a result, the schedule obtained

cannot ensure smooth patient flow. We propose a mixed integer programming
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(MIP) model because it can incorporate scenarios to mimic the uncertainty

in the process, and it has flexibility that allows us to model other essential

characteristics of the patient flow. The main characteristics of the patient flow

process are

• The LoS is random and we only know its distribution. The range of LoS

is quite large. For example, a patient may stay in an intensive care unit

(ICU) after surgery from one day to 60 days. Moreover, LoS distributions

are generally positively skewed and long-tailed.

• At no point in time are all the resources in a downstream facility available.

For example, if we are developing a four-week schedule to optimise patient

flow in the ICU, then on the first day of each four-week period there will

be some patients from the previous periods occupying the ICU beds with

an unknown remaining LoS. This means that not only is the LoS random,

but the resource availability also has some uncertainty.

• In the actual process, there is a trade-off between resource utilisation

and cancellations. For example, we can get a very high utilisation (say,

≥ 90%) by scheduling the same number of patients as the number of beds

in a downstream facility each day. However, we will be required to cancel

many elective operations each day because of capacity shortage. There-

fore, in the real process, we need to maximise resource utilisation while

keeping the cancellations within an acceptable limit.

We develop a MIP model to analyse and optimise the patient flow process

that is capable of capturing all these unique characteristics. Uncertainty is incor-

porated by using various random LoS scenario realisations, and non-anticipation

is imposed by constraining the model to schedule patients in the same order as

their position in the queue. Moreover, a particularity of our model is that the
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scenario realisations are chronologically sequential and not parallel. The rest

of the paper is structured as follows. In Section 2, we present a review of the

literature on scheduling elective surgery. In Section 3, we describe the problem

in detail. We discuss key concepts and our approach thoroughly in Section 4,

and the MIP model is presented in Section 5. Next, we conduct some computa-

tional experiments and present our results in Section 6. We conclude the paper

and present some directions for further research in Section 7.

2. Literature review

Strategic operating room management involves long term decision making such

as designing a master surgical schedule (MSS). An MSS is usually a two or

four-week timetable which repeats for several months in which surgeons from

various surgical specialities are assigned to operating theatres. The first stage is

a case mix planning in which available operating theatres’ times are divided into

various time blocks, and the required numbers of time blocks are allocated to

various surgical departments. Researchers have developed linear programming

and mixed integer programming models for case mix planning, (see Blake and

Carter [3]).

The second stage involves creating an MSS in which each time block is al-

located to a surgical team. In the third stage, patients are booked for surgery.

Usually, surgical liaison nurses talk to patients who are waiting for elective

surgery and schedule their operations in suitable time slots. Surgical liaison

nurses do this manually on a daily basis. Building an MSS is an important

step in strategic planning, and it is a widely studied problem in the literature

on the application of operations research in healthcare management. Various

researchers have studied this problem from different aspects.

Rafaliya [14] suggested a MIP model with the objective of reducing overutil-
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isation and underutilisation of the recovery room. However, he assumed that

the recovery time was deterministic. Min and Yih [12] suggested a stochastic

scheduling model with the objective of minimising the sum of overtime in op-

erating theatres and patients’ waiting time. Carter and Ketabi [5] developed a

MIP model with the objective of balancing daily bed demand in a ward. They

fitted lognormal distributions to the LoS data in each surgical department and

generated random LoS scenarios to use in their deterministic MIP model. They

used a sampling average approximation (SAA) approach to obtain the final

schedule. Adan et al [1] developed a MIP model to minimise the deviation from

a target resource utilisation level where the resources were available operating

theatre hours, ICU bed hours, and ward bed hours. They computed the prob-

ability of a patient staying in the hospital on each day after surgery by using

the empirical distribution of the LoS data. By using these probabilities, they

computed the expected number of occupied beds on each day of the scheduling

period and used this as a proxy for stochastic resource demand.

There is another strand of literature on developing an MSS with the ob-

jective of balancing bed demand in a downstream facility. For example, Chow

et al [6] developed a MIP model to balance the expected number of ward beds

used on a given day by minimising the maximum of the expected number of

beds used over the scheduling period. Belien and Demeulemeester [2] developed

a MIP model with the objective of minimising the shortage of expected ward

bed utilisation and the variance of ward bed utilisation at a downstream fa-

cility. However, they made a simplifying assumption that the LoS followed a

discrete distribution with a small range of possible values. Cappanera, Visintin,

and Banditori [4] investigated the effect of various scheduling strategies on the

utilisation level and overbooking. They developed a MIP model in which they

considered three different objectives to obtain different scheduling schemes. The

objectives they considered were the minimisation of the maximum daily utili-

sation of ward beds, the minimisation of the difference between the maximum

and the minimum daily utilisations of ward beds, and the minimisation of the
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sum of the quadratic overrun of operating theatres. They divided patients into

various groups within a surgical department according to their LoS and their

surgery duration, and they used the average value in each group as an input for

their MIP model to obtain an optimal schedule.

The above-mentioned MIP models were either based on the assumption that

the LoS is deterministic [12, 5] or were developed to balance the expected re-

source demand, or to minimise the expected shortage of resources [1, 6, 2]. As

we will discuss in Section 3 and demonstrate in Section 6, these approaches may

not provide us with the desired outcomes. We have developed a stochastic MIP

model that balances the actual resource demand on each day and maximises the

throughput while keeping the number of cancellations within limits. The novelty

in our model is that it utilises the given LoS scenario realisations chronologically

in a sequential manner, and not in a parallel manner. Moreover, we constrain

our model to schedule patients in their queueing order and repeat the scheduling

decision over a long time-horizon. This helps us incorporate the variability in

the LoS without making any assumptions regarding the LoS distribution. The

model is presented in Section 5. Next, we will describe the problem in detail.

3. Problem description

The problem we discuss here is driven from a real life situation faced by a

hospital. Our partner in this research project is a major metropolitan public

hospital located in Melbourne, Australia. The hospital management is inter-

ested in improving patient flow in the surgical suite (the surgical suite includes

operating theatres, recovery rooms, the ICU, and surgical wards) so that they

can deliver surgical services more efficiently. They have been frequently can-

celling elective operations on the day of surgery because of a capacity shortage in

the intensive care unit (ICU). Therefore, we were required to model and analyse

the elective patient flow in the surgical suite, and develop a scheduling scheme

to optimise the patient flow process.
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In a surgical suite, patients receive service at one care step and move to a

subsequent care step. The LoS at each care step is random and there is no pro-

vision for waiting. Patient flow is controlled by the bottleneck facility, that is,

the facility with the minimum capacity in the surgical suite. However, because

of the stochastic nature of the process, the bottleneck may change from one

care step to another according to the type of patients being operated on. For

example, if we operate on many day surgery patients (the patients whose post

operative LoSs are generally a few hours), then the operating theatres will act

as a bottleneck facility because the demand for post-operative care services is

reduced. Whereas if we operate on many complex patients with longer post op-

erative recovery times, then the ICU or the ward will act as a bottleneck facility.

After interviewing hospital staff, we identified that the ICU is currently the

bottleneck facility. An ICU is a multidisciplinary care facility where a wide

range of critically ill patients are treated. It receives inpatient flow from oper-

ating theatres, the emergency department, critically ill patients in wards, and

transfers from other hospitals. The elective surgery patients’ arrivals are sched-

uled, whereas others, such as the emergency patients’ arrivals, are random. Al-

though elective patients’ arrivals are scheduled, elective operations are cancelled

frequently because of the unavailability of an ICU bed. On many occasions, the

ICU reaches capacity due to the elective patient flow. In a flow network where

one node acts as a bottleneck, we can optimise the overall flow by maximising

the flow at that node.

From the literature review, it is clear that the stochastic nature of the LoS

increases the complexity of the problem. In the healthcare industry, resources

are bundled together and they are quantifiable. For example, a twenty bed

ICU means the ICU is fully equipped with all the required machines, and staff

to accommodate twenty patients. The LoS is an important measure because

patient resource demand is approximated by their LoS. Some researchers have
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used average LoS and others have modelled the stochastic LoS by using its em-

pirical distribution. A major problem with this approach is that an empirical

distribution function is just an empirical measure of one sample. Our data in-

dicated that there was around two percent of very complex patients who stay

much longer than the others, and they can have a wide range of possible LoS

values. Since the percentage of these patients is small, even a relatively large

dataset cannot capture all the possible LoS values. To capture the randomness

in the process appropriately, we need a distribution function which can generate

various possible scenario realisations.

Moreover, balancing the expected resource demand in a downstream facility

does not ensure optimal outcomes. When we balance the expected resource

demand, we ignore the fact that the actual resource demand may vary drasti-

cally from the expected resource demand because patient resource demand has a

large variation. The sample average resource demand (average resource demand

across all ICU beds) may converge to the expected resource demand if the law

of large numbers is applicable. This means that either we are averaging a very

large number of patients’ resource demands, or the variation in their resource

demand is small, or both. However, in reality, the number of patients whose

resource demand is being averaged is quite small, and the variation in patient

resource demand is quite large. Because of this, the pooled resource demand

is still a random variable with a reasonably large variance. Therefore, ensuring

that the expectation of pooled resource demand on each day is less than or equal

to the available resources is not sufficient.

Cappanera, Visintin, and Banditori [4] used simulation to assess the quality

of schedules generated by a MIP model with the objective of balancing the ex-

pected resource demand. They found that using the optimal schedule resulted

in a large amount of overbooking. In a real life scenario, it is not possible

to accommodate the overbooked patients by temporarily increasing resources.

Instead, they are cancelled. However, the model optimises the arrival process
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based on the assumption that no patient is cancelled. As a result, the actual

throughput decreases drastically when we take into account cancellations.

Furthermore, targeting a very low utilisation level may ensure very few can-

cellations. However, this will result in a poor throughput and an inefficient

system. In a real life scenario, cancellations are unavoidable. It makes more

sense to model the patient flow process with cancellations and optimise that pro-

cess. Therefore, in our model, we propose explicit decision variables to model

cancellations. In the next section, we will discuss key concepts and our approach

to analyse and optimise the patient flow process.

4. Fundamental concepts and our approach

To make our approach realistic and useful, we need to model and optimise

the process with a similar level of uncertainty as that of the actual process.

We develop a strategy to keep a comparable level of uncertainty in the MIP

model. Kumar and Anjomshoa [10] found that classification and regression

tree (CART) analysis is useful for classifying patients into lower variability LoS

groups. We applied CART analysis on the ICU LoS data from the partner hos-

pital, and we classified patients into short-stay (SS), medium-stay (MS), and

long-stay (LS) groups. In regression tree analysis, the dependent variable is

recursively partitioned into groups according to the independent variables in a

way that the fitted tree is capable of explaining the maximum variability in the

dependent variable. In our case, the dependent variable was the LoS and the

independent variables were patient attributes, such as primary procedure code,

age, and gender that were known to us before surgery. According to the fitted

regression tree, 40% of patients belong to the SS group, 51% belong to the MS

group, and the remaining 9% belong to the LS group.

Next, we fitted Coxian discrete phase type (DPH) distributions (see La-
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touche and Ramaswami [11]) to the data corresponding to each resource user

group separately. We selected the model using the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC), and we validated the fit

using the Chi-square goodness of fit test [9]. When the AIC and BIC proposed

different models, we selected the model that satisfied the goodness of fit test

and had fewer parameters. The log-likelihood, the AIC and BIC values, and the

Chi-square goodness of fit test’s p-values of the fitted distributions are given in

Table 1. We used fitted distribution models to sample patients’ LoSs.

Table 1: The AIC and BIC, and the Chi-square test’s p-value of the fitted DPH distributions

Group #Phase Loglikelihood # Param. AIC val BIC val p-value

SS 3 -975.29 5 1960.59 1983.89 0.1173

MS 3 -1629.91 5 3269.82 3294.36 0.0917

LS 3 -483.13 5 976.26 992.22 0.5519

The literature suggests that the optimal occupancy level for the ICU is around

70% to 75% (see Tierney and Conroy [16]). In the hospital, seven ICU beds

are being used for elective surgery patients. In our model, we place the restric-

tion that a maximum of twenty patients, whose average LoS is 2.4 days, can

be scheduled per week. This allows a utilisation of up to 97.9% of ICU bed

days available and we refer to this (bed days utilised×100/ bed days available)

as the occupancy level of the ICU. However, the model decides the optimal

throughput according to the desired trade-off (implemented as a penalty factor)

between the throughput and the number of cancellations. We also constrain

our model to maintain the proportion of the scheduled patients from each LoS

group the same as the average proportion in the data. Furthermore, we refer

to a four week period as one scheduling period, or one timeblock. A LoS sce-

nario realisation is defined as an assignment of patients’ positions in the queue

and their LoS values in each group for a selected number of timeblocks. For

example, an m-block LoS scenario realisation of n patients consists of a n×m
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matrix of LoS values, where n is the maximum number of patients that can be

scheduled in one scheduling period, and each entry of the matrix is sampled

from the fitted DPH distributions, independently of the others. An element,

LoSt,p, of the matrix represents the LoS of the pth patient in timeblock t, ∀

p = 1, ..., n, and ∀ t = 1, ...,m.

While developing an MSS, we need to decide how many patients from each

LoS group we should operate on, on each day of the scheduling period, to ensure

smooth patient flow and optimal throughput. We should make these decisions

based entirely on patient groups’ LoS distributions. Given an actual realisation

of one-block LoS scenario as input, the model would take advantage of known

LoS values and schedule particular subsets of patients from each group to bal-

ance resource requirements on each day. This is advantageous if we know the

exact LoS values because we can manage patient flow more efficiently. However,

we know only the LoS distributions. We developed a strategy to minimise the

undesirable effect of providing LoS scenario realisation as input.

First, we modelled and optimised the patient flow process over several time-

blocks and constrained our model to make the same scheduling decision for all

the patients at position p in each timeblock, irrespective of their LoSs. Doing

so helped us in optimising scheduling decisions over several possible LoS values,

and the model could not take full advantage of a specific timeblock’s realised

LoSs. However, we obtained a schedule in which fewer patients were scheduled.

This happened because the model had to ensure resource (ICU beds) availability

for all the scheduled patients, irrespective of the variation in their resource re-

quirements in different timeblocks. As a result, the model had to keep resources

idle in some timeblocks. For example, consider a one bed ICU and a three-block

time horizon. Assume that the patient at position one has a LoS of two, seven,

and nineteen days in timeblock one, two, and three, respectively. If the model

schedules this patient on the first day, it cannot schedule any patient until the

nineteenth day in any timeblock because the scheduling decisions stay the same
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in each timeblock. Therefore, the bed-days utilised in timeblock one and two

will be much less than the bed-days available, and our resource management

will be inefficient.

To eliminate the undesirable effect of this feature of the model, we used a

stochastic approach in which reverse decisions were modelled as cancellation

decisions using decision variables (Yt,p,d) that could cancel some patients’ op-

erations according to the capacity shortage in each timeblock, independently.

In operational planning, cancelled patients should be rescheduled in the next

available slots with some priority. Since we were developing a tactical MSS,

we only identified patient groups, not patients. As a result, the MSS would

be unaffected if we rescheduled a cancelled patient instead of a new patient

in the next available slot for his or her group because each patient’s LoS was

randomly sampled from the fitted LoS distribution. In operational planning,

we recommend that the cancelled patients are rescheduled early in the day to

avoid cancelling them again. Now, we were able to generate efficient schedules.

However, there was still some scope for the model to schedule particular subsets

of patients on each day to balance resource requirements. As we increase the

number of timeblocks, allowing the model to select patients in the MSS loses

importance. However, the model could take advantage of the known LoS values

while making cancellation decisions.

Next, we devised a strategy to prevent the model from taking advantage of

this flexibility. We constrained our model to schedule patients in the same order

as their positions in the queue in each group. As a result, the model could only

decide the number of patients to be scheduled on each day of the scheduling

period. For example, if the model decides to schedule four patients on the first

week’s Monday, then they have to be the first four patients, that is, patients

at positions from one to four. Since the patients were positioned in the queue

in random order, the model has to schedule a randomly-gathered patient sub-

set on each day. This prevented the model from selecting particular subsets of
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patients to balance resource demand. We also constrained our model to cancel

the earliest scheduled patient first on each day in each group. This prevented

the model from identifying patients by taking advantage of known LoS values

while making cancellation decisions. By using these strategies, we developed a

novel approach to optimise patient flow by using a deterministic optimisation

on different sequences of randomly generated LoS scenario realisations.

Our stochastic model uses the LoS scenarios in a non-traditional manner.

In the traditional approach, the first stage variables represent the decisions we

make before any uncertainty is revealed, and the second stage variables represent

the decisions we make according to each realised scenario. In our model, first

stage variables are associated with the master plan that repeats over time for

the whole planning horizon, whereas the second stage variables are cancellation

decisions that occur sequentially over time. Moreover, since we extend patients’

remaining LoS from one scheduling period to the next scheduling period, each

timeblock’s resource states (the bed occupancy) interact with other timeblocks’

resource states over the whole planning horizon. Figure 1 represents how we

used LoS scenarios to model uncertainty in the patient flow process in a novel

way.

Figure 1: Diagram representing the MSS being repeated over a three timeblock planning

horizon and the interaction between timeblocks through cancellations and LoS rotation
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Here, Xp,d are binary decision variables, associated with the master plan that

take the value one if patients at position p in the queue are scheduled for surgery

on day d of each timeblock; zero otherwise, and Yt,p,d are cancellation decision

variables that take the value one if the patients at position p in timeblock t is

cancelled on day d. The values of Xp,d stay the same for all the patients at

position p in all timeblocks, whereas Yt,p,d can take different values as t varies.

A typical schedule generated by using the full model for an input of three-block

LoS scenario realisation is given in Table 2.

Table 2: An optimal MSS generated by the model for a three-block LoS scenario realisation

Weekday Mon Tues Wed Thurs Friday

timeblock one

1st week p41, p
6
2, p

2
3 p54, p

3
5 p26 p57, p

2
8 p39, p

2
10, p

3
11

2nd week p512, p
7
13, p

2
14, p

2
15 p416p

2
17 p218, p

8
19 p1120, p

2
21 p322

3rd week p223, p
2
24, p

2
25, p

6
26 p227,p328 p329,p430, p

10
31, p

2
32 p333, p

2
34, p

2
35

4th week p436, p
2
37, p

4
38, p

9
39 p440 p441, p

2
42 p443, p

3
44, p

3
45

timeblock two

1st week p21, p
3
2, p

2
3 p24, p

2
5 p36 p37, p

4
8 p29, p

12
10, p

4
11

2nd week p712, p
2
13, p

3
14, p

2
15 p216p

2
17 p318, p

3
19 p220, p

5
21 p222

3rd week p223, p
2
24, p

2
25, p

11
26 p227,p228 p229,p330, p

19
31, p

3
32 p233, p

2
34, p

2
35

4th week p336, p
2
37, p

4
38, p

2
39 p1040 p841, p

5
42 p1143, p

2
44, p

2
45

timeblock three

1st week p21, p
3
2, p

4
3 p54,p25 p26 p67, p

2
8 p29, p

2
10, p

2
11

2nd week p212, p
2
13, p

4
14, p

3
15 p616p

2
17 p318, p

7
19 p220, p

2
21 p222

3rd week p423, p
2
24, p

2
25,p226 p227, p

2
28 p329, p

3
30, p

9
31, p

2
32 p433, p

2
34, p

3
35

4th week p236, p
2
37, p

2
38, p

2
39 p640 p241, p

2
42 p243, p

2
44, p

2
45

In this table, the ps’ subscripts represent patients’ positions in the queue and

the superscripts represent their LoSs. The table shows which patients should

be operated on, on each day, and the struck out patients are the ones whose
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operations are cancelled because of a lack of resources. Patients at a particular

position in the queue are scheduled at the same time in each timeblock irrespec-

tive of their LoSs. For example, patients at position 31 are operated on, on the

third week’s Wednesday in each timeblock whereas their LoSs are ten, nineteen,

and nine. However, some patients’ operations may get cancelled according to

resource unavailability. For example, in the first timeblock, patients at position

27 and 29 are cancelled.

5. The model

In this section, we will first define all the notation and then present the

MIP model. The parameter g represents the number of patient groups and n

represents the maximum number of patients allowed to be scheduled in each

timeblock. We use m to denote the number of timeblocks considered in the

planning horizon. The parameter beds refers to the number of beds (resources)

available in the ICU. Since all the patients in a group are the same from a

scheduling perspective, we refer to them by their positions in the queue in each

timeblock. The set Patients = {1, 2, ..., n}, denotes the set of all patients in

each timeblock and the set timeblocks = {1, 2, ...,m}, contains all the scheduling

periods in the planning horizon. Similarly, the set Groupk refers to the set of

patients in group k ∀k = 1, ..., g. Finally, the set of all days, working days,

and weekends in each scheduling period are denoted by days, weekdays, and

weekends, respectively. A detailed table of all the notation used is given in the

appendix.

5.1. Objective function

Our objective is to maximise a weighted throughput while maintaining a balance

between resource utilisation and cancellations. We measure resource utilisation

and cancellations by summing the LoSs of patients in the MSS and the LoSs of

cancelled patients, respectively. A multiplier f is used to enforce a desirable bal-

ance between these two conflicting objectives. The objective of the optimisation
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is to maximise

obj =
∑

t∈timeblocks

∑
p∈Patients

LoSt,p ×
∑

d∈days

(Xp,d − f × Yt,p,d). (1)

5.2. Set of constraints

As we discussed in the Introduction, there are some unique features of the

elective patient flow process, and we captured these features in our model by

using several constraints as follows.

5.2.1. Resource availability constraints

In hospitals, elective patients are operated on every weekday and they stay

in the ICU or a surgical ward until they recover. The long-stay patients or the

patients who are operated on at the end of a scheduling period may continue

their stay in the ICU or a surgical ward in the next scheduling period. As a result

of this, at the beginning of each scheduling period, some resources are occupied

by the patients from earlier scheduling periods. This means, that not all the

resources are available for allocation on the first day of a scheduling period. We

modelled this feature by making use of a rotation schedule such as those used in

crop rotation planning (see Santos et. al. [15]). For example, if we solve a model

for thirteen scheduling periods, then a patient who was operated on in the last

scheduling period will stay in the facility during that period. However, if that

patient’s LoS is more than the remaining days in the period, then we rotated

that patient’s stay into the first scheduling period. While ensuring resource

availability for patients in each timeblock, we take into account patients from

the current timeblock and the previous two timeblocks, and the timeblocks are

numbered in cyclic order. For example,

∑
p∈Patients

{ LoS1,p−1∑
j=0

(Xp,d−j − Y1,p,d−j) +

LoSm,p−1∑
j=0

(Xp,28+d−j − Ym,p,28+d−j)

+

LoSm−1,p−1∑
j=0

(Xp,56+d−j − Ym−1,p,56+d−j)
}
≤ beds, ∀d ∈ days,

(2)
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are the required constraints for scheduling period one. They state that the

number of patients who were scheduled in periods 1, m, and m − 1, and were

staying in the ICU on day d of scheduling period one, must be less than or

equal to the number of beds (resources) in the ICU. The required constraint for

scheduling period two is

∑
p∈Patients

{ LoS2,p−1∑
j=0

Xp,d−j − Y2,p,d−j +

LoS1,p−1∑
j=0

Xp,28+d−j − Y1,p,28+d−j

+

LoSm,p−1∑
j=0

Xp,56+d−j − Ym,p,56+d−j ≤ beds
}
≤ beds, ∀d ∈ days.

(3)

Similarly, the patients who were operated on in scheduling periods t − 1

and t− 2 might stay in the ICU during period t, ∀t = 3, ...,m, and the required

constraints to make sure that the number of patients on each day d of timeblock

t is less than or equal to the number of beds are

∑
p∈Patients

{ LoSt,p−1∑
j=0

Xp,d−j − Yt,p,d−j +

LoSt−1,p−1∑
j=0

Xp,28+d−j − Yt−1,p,28+d−j

+

LoSt−2,p−1∑
j=0

Xp,56+d−j − Yt−2,p,56+d−j ≤ beds
}
≤ beds, ∀d ∈ days.

(4)

Note that, we considered the two previous periods in these constraints. This

is because the LoS data we used allows patients to stay in the ICU for up to

three timeblocks. This could be easily modified to take into account longer or

shorter LoSs. Rotational scheduling is helpful in modelling the actual process

in which not all the resources are available at the beginning of the scheduling

period. Furthermore, rotation scheduling also helps us avoid some infeasible

and impractical schedules. For example, when we group patients according to

their predicted LoS and maximise the weighted throughput without considering

rotation, the model tends to schedule all long stay patients towards the end of

the scheduling period. By doing so, the model can ignore patients’ remaining

LoS. Rotation scheduling removes this unrealistic incentive.

17



5.2.2. Constraints to avoid multiple scheduled arrivals of the same patient

Each patient can be scheduled for an operation at most once. The required

constraints are ∑
d∈weekdays

Xp,d <= 1, ∀p ∈ Patients. (5)

5.2.3. Constraints to avoid scheduling patients’ operations over weekends

The constraints, ∑
d∈weekends

Xp,d <= 0, ∀p ∈ Patients, (6)

make sure that no patient is scheduled over weekends.

5.2.4. Constraints to make sure that only scheduled patients can get cancelled

We cannot cancel a patient’s operation unless it is scheduled. The constraints

to avoid cancelling unscheduled patients are

Yt,p,d ≤ Xp,d, ∀t ∈ timeblocks, ∀p ∈ Patients, ∀d ∈ days. (7)

5.2.5. Constraints to impose first come first served policy

As we discussed in Section 4, we need to constrain our model to schedule

patients in the same order as their position in the queue in each group, and we

refer to these constraints as ordering constraints. However, the model is free

to schedule patients from different groups optimally, irrespective of their posi-

tions. For example, a long-stay patient at position eight can be scheduled before

a short-stay patient at position two. As we will discuss further in Section 6, by

using these constraints we were also able to obtain a faster convergence to op-

timality, and a better estimation of the number of cancellations and occupancy

levels. The required inequalities for the ordering constraints are

Xp,d ≤
d∑

t=1

Xp−1,t, ∀{p, p− 1} ∈ Groups, ∀d ∈ days, ∀s = 1..g, (8)
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and

p×Xp,d ≤ ks +
∑

i∈Groups

d−1∑
t=1

Xi,t, ∀p ∈ Groups, ∀d ∈ days, ∀s = 1..g. (9)

Here, the constraints in (9) are redundant. However, they are valid inequalities

and proved effective in reducing convergence times.

5.2.6. Constraints to impose first come first cancel policy

As we discussed in Section 4, to prevent the model from exploiting the

knowledge of known LoS values while making cancellation decisions, we need

to enforce a consistent cancellation order. Therefore, we constrained our model

to cancel the earliest scheduled patient first on each day in each group. The

required constraints for patient group s are

Yt,p,d + 1 ≥ Xp,d + Yt,p+1,d, ∀s = 1..g, ∀p ∈ Groups,

∀d ∈ weekdays, ∀t ∈ timeblocks.
(10)

Furthermore, we may add a few more constraints if we need to ensure that

a minimum number of patients from each group is scheduled each week or the

maximum allowable cancellations over the planning horizon is less than some

percentage of the number of scheduled patients. Similarly, we may add some

constraints to make sure that patients from each group are scheduled for oper-

ations in accordance with surgeons’ availability. Adding these extra constraints

can change our tactical decision model to a more operational tool where other

decisions such as surgeons’ rosters need to be considered.

6. Computational experiments and results

In this section, we describe various experiments to evaluate the features of

our model. First, we used all the three LoS groups, that is, the short-stay (SS)

group, the medium-stay (MS) group, and the long-stay (LS) group, and we

developed a robust MSS for the hospital. We defined the robust MSS as the
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schedule that performed better than the other schedules when all the sched-

ules generated by using various LoS scenario realisations were evaluated on an

independent very-long LoS scenario realisation. The last four experiments are

designed to help us understand various features of the model.

6.1. A robust MSS to optimise the surgical patient flow in the ICU

In the first experiment, we optimised the patient flow for ten 130-block LoS

scenario realisations of all the three LoS groups, and we obtained ten different

MSSs. As discussed in Section 4, we sampled the LoS scenario realisations from

the fitted DPH distribution of each LoS group, and we used the full model with

the objective given in equation (1) and constraints (2) to (10) to develop sched-

ules for ten 130-block LoS scenario realisations. We also added some constraints

to limit the variation in the number patients scheduled on each weekday of the

scheduling period. For example, the difference between the number of the SS

patients scheduled on the first and the second Monday of the scheduling period

cannot be more than one. These constraints helped us reduce the search space,

and obtain a feasible solution quickly. We set the solver time limit to 72 hours,

and the obtained schedules had optimality gaps less than ten percent.

The obtained schedules are given in Table 3. In the table, each box of four

rows represents a schedule for a LoS scenario realisation. There are twenty work-

ing days in a scheduling period. The topmost row represents the day number.

The leftmost column displays the schedule name according to the patient group.

The first three rows of each schedule tell us how many patients from each group

are scheduled, and the last row indicates the total number of patients being

scheduled, on each day of a timeblock. Column T shows the total number of

patients being scheduled per timeblock in each LoS group. Average number of

cancellations per timeblock and the occupancy levels are given in columns C

and O, respectively.
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Table 3: The MSS obtained for ten 130-block scenario realisations

Day 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 T C O

SS1 2 1 3 1 0 2 1 2 1 0 2 1 2 1 0 2 1 3 1 0 26

MS1 3 2 1 0 3 3 2 1 0 3 3 2 1 0 3 2 2 1 0 3 35

LS1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 6

S1 5 3 4 2 4 5 3 3 2 3 5 3 3 2 4 4 3 4 2 3 67 6.5 76.2

SS2 4 0 1 1 0 4 0 1 1 0 4 0 2 1 0 4 0 1 1 0 25

MS2 1 3 0 1 3 1 3 0 1 3 1 3 0 1 3 1 3 1 1 3 33

LS2 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6

S2 5 3 1 3 3 5 3 1 3 4 5 3 2 3 3 5 3 2 3 4 64 5.6 74.2

SS3 1 3 2 1 0 0 3 2 1 0 1 3 2 1 0 1 3 2 1 0 27

MS3 4 0 1 1 3 4 0 1 1 2 4 0 1 1 3 4 0 1 1 3 35

LS3 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6

S3 5 3 3 3 3 4 3 3 3 3 5 3 3 3 3 5 3 3 3 4 68 6.4 77.1

SS4 1 3 1 3 0 1 3 1 2 0 1 3 1 2 0 1 3 1 2 0 29

MS4 4 0 2 0 3 4 0 2 1 3 4 0 2 1 3 4 0 2 1 3 39

LS4 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 6

S4 5 3 3 4 4 5 3 3 4 3 5 3 3 4 4 5 3 3 4 3 74 10.8 81

SS5 2 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 25

MS5 3 0 2 1 2 3 1 2 1 2 3 1 2 1 2 3 0 2 1 2 34

LS5 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6

S5 5 2 3 3 4 4 3 3 2 4 4 3 3 3 4 4 2 3 2 4 65 7.4 77.9

SS6 3 2 2 0 0 3 2 2 0 0 3 2 2 0 0 3 2 1 0 0 27

MS6 2 1 2 1 2 2 1 2 1 3 2 1 2 1 3 2 1 2 1 3 35

LS6 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6

S6 5 3 4 2 3 5 3 4 1 4 5 3 4 2 4 5 3 3 1 4 68 8.2 77.3

SS7 1 0 1 3 0 1 0 2 3 0 1 0 2 3 0 1 0 2 3 0 23

MS7 3 2 0 0 3 3 2 0 0 3 3 1 0 0 3 3 2 0 0 3 31
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LS7 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 6

S7 4 2 1 4 4 5 2 2 3 3 4 1 2 4 4 5 2 2 3 3 60 5.5 71.9

SS8 4 2 0 0 0 4 2 0 0 0 4 2 0 0 0 4 2 1 0 0 25

MS8 1 0 2 3 2 1 0 2 4 2 1 0 2 3 2 1 0 2 3 2 33

LS8 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 6

S8 5 2 2 4 3 5 2 2 4 3 5 2 2 4 3 5 2 3 3 3 64 6.1 75.7

SS9 4 0 2 0 0 4 0 2 0 0 4 1 2 0 0 4 1 2 0 0 26

MS9 0 3 0 3 3 0 3 0 2 3 0 3 0 3 3 0 3 0 2 3 34

LS9 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 6

S9 4 3 2 4 3 4 3 3 3 3 4 4 2 4 3 4 4 3 3 3 66 5.9 75.8

SS10 4 0 1 0 0 4 0 2 0 0 4 0 1 0 0 4 0 2 0 0 22

MS10 0 3 1 2 2 0 3 1 2 2 0 3 1 2 3 0 3 1 2 2 33

LS10 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 6

S10 4 3 2 3 2 4 3 3 3 3 4 3 2 3 3 4 3 3 3 3 61 4 73.4

SAA 4.7 2.7 2.5 3.2 3.3 4.6 2.8 2.7 2.8 3.3 4.6 2.8 2.6 3.2 3.5 4.6 2.8 2.9 2.7 3.4 65.7

SAAR 5 3 3 3 3 5 3 3 3 3 5 3 3 3 4 5 3 3 3 3 66

Table 3 shows that all the obtained schedules are different, and the model

finds the best fitted schedule for each LoS scenario realisation. Although all

the schedules are different, they are qualitatively consistent. For example, the

highest number of patients (four or five patients) are scheduled on each week’s

Monday in almost all the schedules. In most of the schedules, SS patients are

scheduled early in the week whereas MS patients are scheduled in the middle

and the end of the week. Moreover, the rounded sampling average approxima-

tion (SAA) of the total number of patients scheduled on each day given in the

second last row is almost periodic with a period of one week.

Next, we evaluated the performance of all the schedules on an independent

1300-block LoS scenario realisation by using a simulation model. The average
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occupancy level and the average number of cancellations per timeblock com-

puted by the simulation model are given in Table 4. For an easy comparison,

we also list the average occupancy level and the average number of cancellations

computed by the MIP model, in the last two rows.

Table 4: The performance of obtained schedules when we evaluated them using simulation

Schedule S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Canceval 7 5.3 6.9 10.5 5.8 7.4 4.3 5.1 5.6 3.7

Occueval 75.7 73.6 76.6 79.5 74.8 76.1 70.5 73.7 75 72.4

Canc 6.5 5.6 6.4 10.8 7.4 8.2 5.5 6.1 5.9 4.0

Occu 76.2 74.2 77.1 81.0 77.9 77.3 71.9 75.7 75.8 73.4

The average number of cancellations and the occupancy level indicate that all

the schedules performed well when tested on an independent LoS scenario reali-

sation, and there is a trade-off between the average number of cancellations and

the number of patients scheduled. For example, S4 has a very high number of

scheduled operations (74 per timeblock) and cancellations (10.5 per timeblock).

On the other hand, S7 and S10 have less scheduled operations and fewer can-

cellations. The remaining schedules are somewhere in between. Although all

the schedules performed well, some of them performed better than the others.

For example, S9 dominates S1, S2, S3, S5, S6, and S8, because either S9 has

more scheduled operations in comparison to the others for a similar number of

cancellations, or it has less cancellations for a similar throughput. Similarly, S10

dominates S7. From this analysis, we conclude that S9 is the robust schedule

among S1, S2, S3, S5, S6, S8, and S9, and the others are not comparable be-

cause of completely different numbers of scheduled operations and cancellations.

Most of the schedules we obtained were slightly different from each other

because of three main reasons. First, a majority of patients stayed in the ICU

for only one day. Therefore, shifting a patient’s operation to the next day or the

previous day according to the LoS scenario realisation generated a new schedule
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without significant changes in the objective function’s value. Second, SS and

MS patient groups did not differ much in terms of the average LoS. Although

the model was able to exploit this difference to obtain slightly better perform-

ing schedules, the various possible rearrangements of these groups increased

the combinatorial aspect of the problem and the number of alternative efficient

schedules. Finally, the four-week scheduling period also increased the number

of equally efficient alternative schedules.

In the next four experiments, we evaluate various features of the model. In

order to demonstrate the usefulness of various features of the model distinctly,

we used a new patient group obtained by merging SS and MS patients, and we

increased each patient’s LoS by one day. From here onward, we refer to the new

patient group with the modified LoS as the SS group and the LS group remains

the same. In order to simplify the experiments, we used only the SS group in

the next three experiments, and we allowed a maximum of 52 patients could

be scheduled each timeblock. There were only three out of 30 LoS scenario

realisations for which this maximum was attained.

6.2. Experiment to enhance the robustness of the MSS

Since we obtained very competitive schedules for various LoS scenario real-

isations in the previous experiment, we performed an experiment to distinctly

recognise the robust schedule. We reduced the number of independent decisions

made in the master plan by imposing weekly periodicity. Periodicity is a desir-

able feature and it makes the MSS more practical for elective surgery planning

in hospitals. We constrained our model to schedule the same number of patients

on the same weekday. The resultant optimal schedules for 30 thirteen-block LoS

scenario realisations are given in Table 5. Each row indicates an optimal MSS

obtained for one or more LoS scenario realisations, and the value in the right-

most column is the number of instances for which that schedule is the optimal

schedule. There are also two MSSs (MSS3 and MSS12) which were not the

optimal schedule for any LoS scenario realisation in this experiment. However,
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they were the optimal MSSs in other experiments. We use the same notation

to refer to these MSSs in all experiments as given in Table 5.

Table 5: Optimal MSSs generated by the full model for thirteen-block scenario realisations

Schedule

identity

Mon Tues Wed Thurs Friday Sum Freq

MSS1 4 1 3 1 3 12 11

MSS2 4 1 2 2 3 12 3

MSS3 4 1 3 2 3 13 0

MSS4 4 1 2 1 3 11 5

MSS5 4 2 2 1 3 12 3

MSS6 4 1 2 2 2 11 2

MSS7 4 2 2 2 3 13 2

MSS8 4 1 3 1 4 13 1

MSS9 4 1 2 1 4 12 1

MSS10 3 3 1 2 3 12 1

MSS11 3 2 2 1 3 11 1

MSS12 4 2 1 2 3 12 0

SAA 3.93 1.27 2.37 1.27 3.00 11.84 NA

Mode 4 1 2 1 3 11 NA

MSSR 4 1 3 1 3 12 NA

MSSRf=4
4 1 2 1 3 11 NA

Table 5 shows that MSS1 is the most frequently optimal schedule. Still main-

taining our periodicity constraint, we also obtained optimal schedules for five

104-block (eight years) LoS scenario realisations to compare it with the others.

Four out of five LoS scenario realisations generated MSS1 and one generated

MSS2, confirming our hypothesis that the MSS becomes more robust with re-

spect to LoS scenario realisations as we increase the planning horizon. This

happened because of the fact that increasing the planning horizon resulted in
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our scheduling decisions being optimised over a larger number of LoS scenario

realisations. Moreover, MSS1 also performed very well for the 104-block LoS

scenario realisation that generated MSS2 as the optimal schedule. For example,

there were only two more cancellations and 40 less bed-days used in eight years

when we imposed MSS1 on that LoS scenario realisation. We will refer to MSS1

as MSSR (robust MSS). We can see from Table 5 that the SAA is not exactly

the same as MSSR. In fact, MSSR is the same as the most frequently optimal

schedule for thirteen-block LoS scenario realisations. We concluded from the

experiment that as we increase the planning horizon, the MSS becomes more

robust.

6.3. Experiment to assess the effectiveness of the ordering constraints

Next, we repeated the same experiment after removing the ordering con-

straints in subsections 5.2.5 and 5.2.6. The purpose of this experiment was to

understand the effect of these constraints. The MSSs obtained for the same 30

thirteen-block LoS scenario realisations are given in Table 6. We obtained four

possible MSSs in this case and there were two most frequently optimal schedules

(MSS1 and MSS3) each with a frequency of ten. We refer to the model with

the ordering constraints as the full model and the model without the ordering

constraints as the relaxed model.

Table 6: Optimal MSSs generated by the relaxed model for thirteen-block scenario realisations

Schedule

identity

Mon Tues Wed Thurs Friday Sum Freq

MSS1 4 1 3 1 3 12 10

MSS2 4 1 2 2 3 12 5

MSS3 4 1 3 2 3 13 10

MSS8 4 1 3 1 4 13 5

SAA 4 1 2.8 1.5 3.2 12.5 NA
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The relaxed model scheduled 52 patients per timeblock for half of the LoS sce-

nario realisations, whereas the full model did so for only three (out of 30) LoS

scenario realisations. If we allowed the model to schedule more than 52 patients

each timeblock, it could do so only for some rare LoS scenario realisations.

This is because a weekly periodicity required the model to increase at least four

patients each timeblock and the hard constraint on the number of resources

available did not permit scheduling 56 patients each timeblock. Since the re-

laxed model had the flexibility to schedule particular subsets of patients, it was

able to schedule 52 patients per timeblock by gathering similar resource users

into patient subsets and then scheduling these subsets in such a way that it can

achieve maximum utilisation of available resources. We discuss this behaviour

thoroughly in the next two paragraphs.

Furthermore, we obtained a smaller number of optimal schedules by using

the relaxed model as compared to the number of optimal schedules obtained

by using the full model. This was a seemingly counter-intuitive result because

by fixing the order of the selected patients in the MSS we would first expect

that the model would not be able to take advantage of known LoS values and

therefore the MSS should converge faster to the most frequent optimal sched-

ule. We analysed detailed solutions generated by both models for one of the LoS

scenario realisations. The full model generated MSS2 and the relaxed model

generated MSS1 as the optimal schedule.

As described in Section 4, our thirteen-block LoS scenario realisation was a

13 × 52 matrix where the column numbers represented the patients’ positions

and the row numbers represented their timeblock. Although the LoS scenarios

were sampled randomly from the fitted DPH distributions, there was a rea-

sonably large sampling variability (the variation in sample means and sample

variances) among columns of the matrix because of a small sample size (only

thirteen). Since the relaxed model had the flexibility to schedule columns in

any order, it exploited the knowledge of columns’ sampling variances while de-
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veloping an optimal schedule. We observed that the model tended to schedule

columns with small sample variances on Monday, Tuesday, and Friday, whereas

the columns with large sample variances were scheduled on Wednesday and

Thursday. One intuitive explanation for this behaviour is that as our data was

positively skewed, columns with large sample variance included relatively longer

LoS patients. Because of the formulation of the objective function, the model

tended to favour longer LoS patients and it avoided cancelling them. Longer LoS

patients also improved resource utilisation over weekends. The model scheduled

them in the middle of the week so that it could cancel shorter LoS stay patients

at the end of the week if the need arose. Similarly, it scheduled columns with

small variability at the beginning of the week to ensure resource availability for

longer stay patients later on.

The full model had to schedule columns in order, and it relied on adjusting

the number of patients being scheduled on each weekday and the position of

the patients who could be cancelled to obtain a better schedule for each LoS

scenario realisation. For example, the detailed solution we analysed had MSS2

as the optimal schedule and the patients at position 32 were cancelled in five

out of thirteen timeblocks. Cancelling patients at position 32 without cancelling

patients at positions 29 and 30 was not possible in MSS1 because they were

not the earliest scheduled patients. Therefore, the full model generated MSS2

instead of MSS1 as the optimal schedule. Although by allowing the order to

be broken, the model seemed to be less affected by a particular sample path,

it was an incorrect inference. The model should not have differentiated among

columns of the LoS scenario realisations because they belong to the same pa-

tient group, and the ordering constraints helped us achieve that objective.

Furthermore, the larger variation observed in the schedules generated by the

full model vanished when we increased the length of sample path or the planning

horizon. The claim is evident from the fact that the number of MSSs obtained

reduces from eleven in Table 5 to seven in Table 7 with MSS1 appearing 47% of
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the time when we increase the time horizon from thirteen-blocks to 26-blocks.

Our claim is also supported by the results in subsection 6.2 where we obtained

only two MSSs with MSS1 appearing 80% of the time when we increased the

time horizon to 104-blocks.

We also developed a simulation model to calculate the actual number of

cancellations and the true occupancy level achieved by implementing MSSR

and MSS3 (MSSR was the most frequent optimal schedule in subsections 6.2,

and 6.3 and MSS3 was another equally frequent optimal schedule as MSSR in

subsection 6.3). We found that the results from the relaxed model understated

the number of cancellations and overstated the occupancy level in comparison

to the results from the simulation model. A detailed comparison of the results is

given in Table 9 in the appendix. As evident from Table 9, the results generated

by the full model are quite close to the results generated by the simulation

model. We can also see that MSS3 performs slightly better than MSSR in

terms of occupancy level whereas MSS3’s performance is much worse than that

of MSSR in terms of the number of cancellations. Keeping the number of

cancellations within limits is an important goal of the hospital management.

Misleading results from the relaxed model may entice us to implement MSS3

and underachieve that goal.

Furthermore, the full model converged to optimality much faster than the

relaxed model because of a drastic reduction in the search space. On average,

a thirteen-block LoS scenario realisation reached a 1% optimality gap in 120

minutes by using the relaxed model, whereas the same instance was solved to

optimality within twenty minutes by the full model. From the analysis, we con-

cluded that the ordering constraints helped us in limiting the model’s ability

to take advantage of known LoS values and gave us accurate estimation of oc-

cupancy level and cancellations, and they made the computation faster. We

also concluded that classifying patients into lower variability LoS groups was

useful to manage patient flow more efficiently. Moreover, we analysed the re-
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Table 7: Frequency of MSSs generated by the full model for longer planning horizons

Timeblocks 26-blocks (30 realisations) 104-blocks (five realisations)

Schedule Id Frequency Proportion Frequency Proportion

MSS1 14 0.47 4 0.80

MSS2 6 0.20 1 0.20

MSS3 2 0.07 0 0.00

MSS4 3 0.10 0 0.00

MSS6 1 0.03 0 0.00

MSS7 3 0.10 0 0.00

MSS12 1 0.03 0 0.00

sults from the simulation model and we provide the box-plots of the number of

occupants in the ICU on each day of the week obtained by implementing MSSR

and MSS3 in Figures 2 and 3, respectively, in the appendix. Although there

is variation in the number of patients scheduled on each weekday, it is evident

from the box-plots that the variation in the ICU bed demand on each weekday

is reasonably small.

6.4. Experiment to assess the usefulness of the penalty factor f

Another important feature of our model was that we could decrease cancel-

lations at the cost of a lower occupancy level, or improve the occupancy level

which would increase cancellations. Therefore, in one of our experiments, we

changed the control parameter, f , from two to four. A detailed comparison

of occupancy level and cancellations at the two penalty levels is given in Ta-

ble 10 in the appendix. The most frequently obtained schedule was the schedule

MSSRf=4
in Table 5. This experiment indicates that our model is a flexible tool

for decision makers to help them in making optimal decisions.
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6.5. Analysing an MSS developed by using a reduced variability LoS distribution

Finally, we performed an experiment to understand the effect of reducing the

variation in the LoS data, and we used both the SS and the LS patient groups

in this experiment. When we use average LoS or make some simplifying as-

sumptions regarding the LoS distributions, we change the variability in the LoS.

In our case, since the average LoS for each patient group was not an integer,

we modelled the LoS with a discrete random variable with only two possible

values {3, 4} while keeping the average LoS the same. In order to compare the

results, we also generated the optimal MSS for the ICU with random LoS sce-

nario realisations, and the most frequently optimal schedule is given in Table 8.

We found that the MSS obtained was drastically different from the MSS in

Table 8. For example, five short stay patients were scheduled on each Monday,

zero on Tuesday and Wednesday, and three short stay patients were scheduled

on each Thursday and Friday. Similarly, one long stay patient was scheduled for

surgery on each Tuesday. Moreover, we were able to achieve a 91% occupancy

level with only 3.8% cancellations. The results clearly show that a very good

scheduling model may lose the relevance if it cannot optimise the process for

realistic variability in LoS values.

Table 8: The robust MSS for generated by the model using a 104-block LoS scenario realisation

which includes both: long stay and short stay patients

Number of patients to be operated on each week of the schedule

Day of the week Monday Tuesday Wednesday Thursday Friday

Short stay patients 4 1 2 0 3

Long stay patients 0 0 0 1 0

Total patients 4 1 2 1 3
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7. Conclusions and future work

In this paper, we have developed a sequential mixed integer programming

model to optimise the MSS. It is very difficult to model a real-life process with

all of its complexities. However, making unrealistic simplifying assumptions

makes a model less useful. In this work, we have made an attempt to model

the patient flow process without making many assumptions. Our mathematical

contribution is a novel approach used in our stochastic MIP model for optimis-

ing the MSS in which we used deterministic optimisation on different sequences

of randomly-generated LoS scenarios. By conducting various experiments, we

demonstrated that our approach is useful for developing a robust MSS without

optimising the process over a very large number of LoS scenario realisations.

Moreover, we proved that the results (the number of cancellations and the oc-

cupancy level) we obtained from the optimisation model were the same as the

results obtained by using the simulation model. We also proved that the most

frequently optimal MSS was the robust MSS, and not the rounded SAA.

Our model is useful for optimising the MSS of all elective surgery patients.

We only presented here the optimal MSS for the patients who need an ICU bed

after surgery. However, it can also be used for optimising patient flow in each

surgical ward, independently. It can be argued that the optimal solution ob-

tained by optimising each ward independently may not be a feasible solution for

a given surgical suite. However, it can provide us with a very good understand-

ing of the process. Moreover, the model can also be extended to optimise the

whole surgical suite by increasing the number of patient groups and modelling

constraints for each group independently.

The model we have presented in this article is useful for strategic or tactical

patient flow management which includes long term decisions. In real life, we also

need to make many decisions to manage daily patient flow. For example, we need

to cancel overbooked patients’ operations according to resource unavailability.
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We can make these decisions on the day of surgery but that is inconvenient for

patients. In future, we are willing to develop a model for operational (day to

day) management of patient flow. This model will help us make cancellation

decisions before the day of surgery in accordance with the current resource

status.
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9. Appendix

9.1. Parameters used

g = The number of patient groups.

n = The maximum number of patients allowed to be scheduled in each schedul-

ing period.

m = The number of scheduling periods.

n1, n2, ..., ng = The number of patients in each patient group.

k1, k2, ..., kg = The maximum number of patients in each group that can be

operated on a given day.

beds = The number of beds available in the downstream facility.

Patients : The set of all patients = {1, 2, ..., n}.

Groupk : The set of patients in LoS group k = {(n1+..+nk−1), .., (n1+..+nk)}.

timeblocks : The set of scheduling periods = {1, 2, ...,m}.

days : The set of days in a scheduling period = {1, 2, ..., 27, 28}.

weekdays : The set of weekdays in a scheduling period =

{1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26}.

weekends : The set of weekends or holidays in a scheduling period = {6, 7, 13, 14, 20, 21, 27, 28}.

Available beddays : Total number of beddays available = 28×m× beds.

LoSt,p = Patient p’s LoS in timeblock t.

f : The penalty factor for cancelling a scheduled operations.

PlannedSurgeries = Total number of planned operations.

CancelledSurgeries = Total number of cancelled operations.

Used beddays = Total number of bed days used by patients.
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Figure 2: Boxplot of the number of patients in the ICU on each weekday with MSS1
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Figure 3: Boxplot of the number of patients in the ICU on each weekday with MSS3
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Table 9: Comparison of the results (occupancy rates and average cancellations per timeblock) generated by the two models

Relaxed model (without the ordering constraints) Full model (with the ordering constraints)

Scenario

realisa-

tion

Average

cancella-

tions

Total

Sched-

uled

Cancellation

(%)

Occupancy

level (%)

Average

cancella-

tions

Total

Sched-

uled

Cancellation

(%)

Occupancy

level (%)

LoS1 3.2 52 6.21 86.97 4.8 48 9.17 76.84

LoS2 3.6 52 6.95 89.05 4.8 48 9.17 78.96

LoS3 3.0 52 5.77 89.72 4.5 48 8.73 80.02

LoS4 1.6 48 3.11 86.81 7.8 52 14.94 83.59

LoS5 2.2 52 4.29 87.68 3.5 48 6.80 78.18

LoS6 2.2 48 4.14 88.97 3.2 44 6.21 78.14

LoS7 3.4 52 6.51 89.17 4.6 48 8.88 79.98

LoS8 1.0 48 1.92 86.66 4.9 48 9.47 79.95

LoS9 2.0 52 3.85 87.95 3.5 48 6.80 77.94

LoS10 3.4 52 6.51 89.36 4.5 48 8.73 80.14

LoS11 1.2 48 2.37 88.27 5.8 48 11.09 82.54

LoS12 1.8 48 3.40 87.13 2.8 44 5.47 76.77

LoS13 1.9 52 3.70 88.03 3.9 48 7.54 78.53

LoS14 2.7 52 5.18 88.70 3.8 48 7.25 78.41

LoS15 3.6 52 6.95 89.87 4.5 48 8.73 80.81

LoS16 3.5 52 6.66 89.05 4.8 48 9.32 80.38

LoS17 0.7 48 1.33 86.50 2.0 44 3.85 76.77

LoS18 1.7 48 3.25 88.93 2.7 44 5.18 78.73

LoS19 3.2 52 6.07 88.97 6.3 52 12.13 82.61

LoS20 1.2 48 2.22 86.07 5.1 48 9.76 79.79

LoS21 1.2 48 2.22 86.07 5.4 48 10.36 79.36

LoS22 2.3 48 4.44 89.52 3.6 44 6.95 77.59

LoS23 2.8 52 5.33 88.03 6.5 52 12.43 82.14

LoS24 1.8 52 3.55 87.24 3.8 48 7.25 77.04

LoS25 1.1 48 2.07 86.46 4.8 48 9.32 79.63

Simulation results when we implemented
MSSR 4.31 48 8.98 78.47

MSS3 6.96 52 13.38 80.66
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Table 10: Comparison of occupancy rates and average cancellations per timeblock for two penalty factors

f=2 f=4

Scenario

realisa-

tion

Average

cancella-

tions

Total

Sched-

uled

Cancellation

(%)

Occupancy

level (%)

Average

cancella-

tions

Total

Sched-

uled

Cancellation

(%)

Occupancy

level (%)

LoS1 5.1 48 10.58 77.00 1.0 40 2.08 68.17

LoS2 2.4 44 4.97 76.33 2.4 44 4.97 76.33

LoS3 4.7 48 9.78 80.57 1.6 44 3.37 75.94

LoS4 2.2 44 4.49 76.22 0.8 40 1.60 71.47

LoS5 3.5 48 7.21 78.65 0.8 40 1.76 69.15

LoS6 3.0 44 6.25 78.77 3.1 44 6.41 78.77

LoS7 5.0 48 10.42 80.30 1.3 40 2.72 71.31

LoS8 3.9 48 8.17 80.57 1.1 40 2.24 71.08

LoS9 3.9 48 8.17 78.61 2.1 44 4.33 73.94

LoS10 4.0 48 8.33 79.63 1.2 40 2.40 69.62

LoS11 5.2 48 10.90 81.95 2.2 44 4.65 77.51

LoS12 4.8 48 10.10 80.65 1.5 40 3.04 71.74

LoS13 4.0 48 8.33 78.53 1.4 44 2.88 74.22

LoS14 4.2 48 8.65 78.65 2.4 44 4.97 73.98

LoS15 4.8 48 9.94 80.65 1.3 40 2.72 69.70

LoS16 4.8 48 9.94 79.83 2.3 44 4.81 76.14

LoS17 1.8 44 3.85 76.18 1.8 44 3.85 76.18

LoS18 4.5 48 9.46 81.79 1.0 40 2.08 70.33

LoS19 4.5 48 9.46 78.73 1.1 40 2.24 69.86

LoS20 5.2 48 10.90 79.16 1.5 40 3.21 70.60

LoS21 5.1 48 10.58 79.40 1.2 40 2.56 69.82

LoS22 2.8 44 5.93 77.12 0.6 36 1.28 67.97

LoS23 4.2 48 8.81 79.40 2.1 44 4.33 75.67

LoS24 4.0 48 8.33 78.10 1.3 40 2.72 69.19

LoS25 4.2 48 8.81 81.20 0.5 40 0.96 70.92
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