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Abstract— Due to hardware constraints and safety require-
ments, many engineering systems have to satisfy input and
output constraints. This paper proposes a new feedback-based
iterative learning control (ILC) that can ensure the satisfaction
of input and output constraints for linear-time-varying (L TV)
systems. The proposed control structure consists of an output
feedback loop, a feed-forward ILC and a hard constraint for
input. A barrier function is used to assist the design of the
output feedback in order to satisfy the output constraints.An
appropriate saturation function is used in the design of ILCloop
to address the input constraints. By using a suitable composite
energy function, the main result of this paper shows that the
desired trajectory can be learned using the proposed control
structure without violating the input and output constrain ts.
Simulation results are presented to demonstrate the effective-
ness of the proposed control structure.

I. INTRODUCTION

Most of the classical control techniques are model-based,
which requires sufficient knowledge of the system of in-
terests. Iterative learning control (ILC), on the other hand,
is a data-driven or model-free control design methodology
for systems that perform repetitive tasks over a finite time
interval. By exploiting the knowledge gained through rep-
etitions, ILC design can relax the requirement of model
information, leading to a perfect tracking performance over
a finite time interval when iteration tends to infinity. It
has found wide applications in chemical batch processes,
robotic manufacturing, robotic rehabilitation systems and so
on, where the tracking task is repetitive in nature (for more
details on its applications, see survey papers [1]–[3]).

Many ILC algorithms have a feed-forward struc-
ture, which has the form:uff

i+1(t) = u
ff
i (t) +

f(ek(t), . . . ek−M (t)), ∀t ∈ [0, Tf ], k ≤ i, i = 1, 2, . . ., and
M is an integer. Here the control input at(i+1)st iteration,
u
ff
i+1, is the sum of previous iteration input and a functional

of tracking error at previous iterationsek, ek−1, . . . , ek−M

for tasks in finite time interval[0, Tf ]. The beauty of feed-
forward ILC is its simplicity in design and implementation.
By using either contraction mapping method [4], [5] or
composite energy function (CEF) [6], the feed-forward ILC
can be applied to a large class of engineering systems with
limited knowledge.

When implementing the proposed ILC algorithms in en-
gineering applications, the physical constraints have to be
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considered. For example, due to constraints from actuators,
the input signals are usually within a certain range. The
output signals are measured by sensors, which have a range
for the measurements. Moreover, sometimes due to safety
reasons, some output signals cannot be over a certain range.
Such examples include the temperature or pressure in a
chemical reactor, the safety region for rehabilitation robotic
systems in order to protect patients, the traffic flow of
an urban region, etc. Hence it is important to ensure the
satisfaction of these constraints in every iteration.

However, many feed-forward ILC algorithms ignore input
constraints and output constraints in the design. Even-though
the perfect tracking performance can be achieved in steady-
state in the iteration domain, during the transient behav-
ior in iteration domain, either output constraints or input
constraints might be violated. In ILC literature, constrained
optimization based approach in super vector formulation has
been used in [7]–[10] to handle constraints in discrete-time
systems. In continuous-time systems, input constraints have
been handled in [11], [12] and output constraints in [13]–
[15] using barrier functions when the state information is
available. To the best of author’s knowledge, simultaneous
satisfaction of both input and output constraints in the stan-
dard feed-forward ILC setting for continuous-time systems
has not been addressed.

The technique to handle output constraints is to use barrier
function (or barrier certificate), which has been widely used
in designing feedback control law to handle output con-
straints, see, for example [16]–[18] and references therein.
Generally speaking, when the output constraints are violated,
the barrier function will approach to infinity. Thus, if the
control input takes the derivative of the barrier function,
when the output is close to the output constraints, the control
input will drive the output away from the constraint.

It is noted that when introducing the barrier function
and its corresponding control law using its derivative, this
control law is in the form of output feedback. Intuitively,
by incorporating this output feedback with the feed-forward
ILC, it is possible to handle both input and output constraints.
However, these two control laws might conflict each other
in the transient of iteration. Hence, a careful analysis is thus
needed.

This paper handles the output-tracking problem in ILC
for continuous-time linear-time-varying (LTV) systems inthe
presence of input and output constraints. In order to simplify
the design of ILC, a standard D-type ILC algorithm is used,
which can ensure the perfect tracking performance without
any constraint for the dynamic system with a relative degree
one. A output feedback control law is incorporated with the
feed-forward ILC. This output feedback is designed using



a barrier function, which has a very general form and can
prevent violating the output constraints. A hard constraint on
input signal is also added to the system. By using a suitable
composite energy function, it is shown that the proposed
control structure is able to handle both input and output
constraints under appropriate assumptions.

II. PRELIMINARIES AND PROBLEM
FORMULATION

Firstly, the notations and needed definitions used in this
paper are introduced. LetR denotes the set of real numbers
and N denotes the set of natural numbers. The set of all
continuous functions in[0, Tf ] that are differentiable up to
jth order is denoted byCj[0, Tf ] for any j ∈ N .

For a vectorx ∈ Rn, |x|2 , x
⊺
x. A vector is called

positive (x > 0) if each element is positive. For any
x(t) ∈ C[0, Tf ], the supremum norm is defined as‖x‖s ,

max
t∈[0, Tf ]

|x(t)|∞, where|x|∞ = max
j∈[1,...,n]

|xj | andxj denotes

jth element ofx. The L2 norm is defined as‖x‖L2 ,(∫ Tf

0
|x(τ)|2dτ

) 1

2

.

For a given matrixA ∈ Rn×m, |A| indicates its induced
matrix norm. A square matrixA = A⊺ > (≥)0 indicates
that this matrix is symmetric and positive definite (positive
semi-definite). For a square symmetric matrixA, λmin(A)
stands for its minimum eigenvalue. The notationIn denotes
the identity matrix of dimensionn.

Definition 1: A continuous functionα : [0, a) → [0,∞)
is said to belong to classK if it is strictly increasing and
α(0) = 0. It is said to belong to classK∞ if a = ∞ and
α(r) → ∞ asr → ∞ [19, Definition 4.2].

Definition 2: Let u ∈ R and u∗ > 0. The saturation
function is defined assat(u, u∗) , sign (u)min{u∗, |u|}
for any u ∈ R whereu∗ > 0 is a scalar constant. For any
u ∈ Rm and a positive vectoru∗, the saturation function is
defined assat(u,u∗) =

[
sat(u1, u1∗), · · · , sat(um, um∗

)
]⊺

.
The following lemmas are needed to facilitate the proof

of main results in this paper.
Lemma 1: [11, Property-3] For any givenur, u and

u
∗ ∈ Rm satisfying sat(ur,u

∗) = ur then the following
inequality holds:|ur − sat(u,u∗)|2 ≤ |ur − u|2. �

Lemma 2: [11, Property-4] For anyu, u∗ andw ∈ Rm

satisfyingu∗ > 0, if v = sat(u,u∗)+w, then the following
inequality holds:|sat(v,u∗)− v| ≤ |w|. �

A. A Motivating Example

Consider a simple “pick and place” one-link robotic ma-
nipulator from [20], which is a single arm rotating about
a base point, with massM at the end effector. The robot
dynamics is given by a second order LTV model:

ẋ1 =x2

ẋ2 =
−b

Irod +M(t)L2
x2 +

Kt

Irod +M(t)L2
u,

y =x2, (1)

whereb is the viscous friction coefficient,Kt is the actuator
gain, andL is the length of robot arm. Here,Irod represents
the moment of inertia of the arm about the base point. The

robot picks and places the massM during the operation
cycle, leading to a LTV system.

Let a0(t) = b
Irod+M(t)L2 anda1(t) = Kt

Irod+M(t)L2 . When
the robot is engaged with massM , a0 = 1 and a1 = 5
otherwise for the case withM = 0, a0 = 5 anda1 = 18.

The reference trajectory is shown in Fig.1. It has been
shown that the following ILC law works for the system (1)
[6]:

u
ff
i+1(t) = u

ff
i + γėi(t), u

ff
1 (t) = 0, (2)

The simulation is performed forγ = 0.05 which satisfies
the convergence condition given in [6] for systems with
a relative degree1 of one and the re-setting condition (see
Assumption 2). The performance requirement needs that
the output satisfies|y(t)− yd(t)| ≤ εb with εb = 0.2.
The supremum norm of tracking error when ILC law (2)
is used to evaluate the tracking performance. As shown in
Fig. 1, though tracking error converges, the errors in the
first 20 iterations violate the output constraint. This shows
that a standard ILC is not able to handle output constraints.
New ILC laws are needed to take care of input and output
constraints simultaneously.
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Fig. 1. Reference trajectory and supremum error- motivating example

B. Problem Formulation

Consider a linear time-varying (LTV) multiple-input-
multiple-output (MIMO) square system2 of the following
form:

ẋ(t) =A(t)x(t) +B(t)u(t)

y(t) =C(t)x(t), (3)

wherex ∈ Rn denotes the state andy, u ∈ Rm denote
the output and input vector respectively. The state matrices
(A(t), B(t), C(t)) have appropriate dimensions and the ele-
ments of the matricesA(t), B(t), C(t) are inC[0, Tf ].

The control objective is to design a sequence of control
input {ui(t)}i∈N such that the output of the system (3) can
track a reference outputyr ∈ C1[0, T ]. Moreover, this system
is subjected to hard input and output constraints, which are
known a priori. The hard input constraint is the saturation
constraint at the total control input (as shown in Fig. 2)
whereas the output constraint is defined by|y(t)| ≤ kb, for
all t ∈ [0, Tf ] wherekb > 0 is the output limit.

The tracking error,e(t) is defined ase(t) = yr(t)−y(t).
Remark 1:For a given reference trajectoryyr , the output

constraints can be converted to the constraints in terms of

1 “If the relative degree of system (3) isr, thenCB = CAB = · · · =
CAr−2B = 0m×m andCAr−1B 6= 0m×m” [21, p.387].

2A MIMO square system is defined as a system which has the same
dimensions for the input and output vectors



tracking error. That is, there exists anεb > ε∗b such that if
|e(t)| ≤ εb, the output constraint:|y(t)| ≤ kb is satisfied.
Such a conversion simplifies the design of feedback back
control law at the cost of conservative design of output as
pointed out in [15]. ◦

The following assumptions are quite standard in ILC.
Assumption 1:There exists a reference inputur ∈

C[0, Tf ] and a reference statexr ∈ C1[0, Tf ] for any given
reference outputyr ∈ C1[0, Tf ] such that the following
relationship holds

ẋr(t) =A(t)xr(t) +B(t)ur(t)

yr(t) =C(t)xr(t). (4)

Furthermore, for the givenu∗ > 0 and kb > 0, it has
sat(ur(t),u

∗) = ur(t) for any t ∈ [0, Tf ] and |yr| < kb.
�

Remark 2:Assumption 1 ensures that there exists a con-
trol inputur that can track the desired signalyr . Both refer-
ence input and the reference output satisfy the corresponding
constraints. ◦
Let (·)i denotes the signal at theith iteration.

Assumption 2:It is assumed that the system (3) executes
a repetitive tracking within a finite time intervalt ∈ [0, Tf ],
and satisfies the identical initial condition:xi(0) = xr(0)
for any iterationi ∈ N . �

Remark 3:Assumption 2 is a standard assumption in ILC
design [6]. This assumption can be relaxed if the perfect
tracking performance is not required. ◦

Assumption 3:The system (3) has a relative degree of
one. In addition, for the simplicity of presentation, it is also
assumed thatC(t)B(t) > 0, for all t ∈ [0, Tf ]. �

Remark 4:Assumption 3 is a standard assumption when
ILC design is based on Contraction Mapping (CM) based
analysis technique. It is possible to accommodate systems
with a higher relative degree using appropriate modifications
of ILC algorithm. ◦

III. CONTROLLER STRUCTURE AND DESIGN

The proposed control structure is shown in Fig 2. It
consists of an output feedback loop and a feed-forward loop
using an ILC. A hard constraint of input is implemented via
an input saturation. The role of the output feedback controller
is to ensure that output constraints are satisfied whereas the
ILC learns the desired control input in the presence of input
constraints. Hence, there are two steps in the design. The
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Fig. 2. Block diagram of the proposed control structure

first one is to design an output feedback to handle output

constraints. The second one is to use a standard ILC control
to ensure the perfect tracking with the consideration of input
constraints. These would lead to the following control laws:

ui(t) =sat(vi(t), u
∗)

vi(t) =ũ
ff
i (t) + u

fb
i (t), ∀t ∈ [0, Tf ], (5)

where ũ
ff
i (t) = sat(uff

i (t), u
∗) represents the modified

input from the ILC control law andufb
i (t) is the feedback

control.
Remark 5:As the system (3) is LTV, with the bounded

control input coming from hard input constraints, the state
trajectories are uniformly bounded for any given fixed time
interval t ∈ [0, Tf ]. That is, there exists a compact set
D ⊂ Rn such thatxi(t) ∈ D, for any i ∈ N and any
t ∈ [0, Tf ]. It is noted that the control objective is to
ensure the perfect output tracking with the bounded state
trajectories. Hence, the output feedback is sufficient to ensure
the perfect tracking. ◦

As the system has the relative degree one, for simplicity,
the following D-type feed-forward ILC is used:

u
ff
i+1(t) =ũ

ff
i (t) + Γ(t)ėi(t), u

ff
1 (t) = 0, (6)

whereΓ(t) ∈ Rm×m > 0 is the learning gain. IfΓ(t) is
designed to satisfy some convergence condition, the perfect
tracking performance can be achieved when there is no
output constraints [5], [6].

Next will provide the design of designing output feedback
control law.

A. Design of output feedback in presence of output con-
straints

Let the state tracking error:δx(t) = xr(t) − x(t). The
error dynamics can be obtained from (3) and (4) as

δẋ(t) =A(t)δx(t) +B(t)δu(t)

e(t) =C(t)δx(t) (7)

whereδu(t) = ur(t) − u(t) wherexr andur come from
Assumption 1.

The output feedback is designed on the basis of some
barrier function. When output constraints are violated, the
barrier function will approach to infinity. There are many
functions that can be served as the barrier function [14]–
[16]. Here, to characterize such a class of barrier functions,
the following assumption is used.

For ease of representation, consider the non-dimensional

positive parameter̃e ,
e
⊺
e

ε2b
in the rest of the paper.

Assumption 4:There exists a continuous differentiable
barrier-Lyapunov-function (BLF),V : [0, 1] → R≥0 such
that the following properties hold:

α1 (ẽ) ≤ V (ẽ) ≤ α2 (ẽ) ,

V (0) = 0; V (1) = ∞,∣∣∣∣
∂V

∂e
(ẽ)

∣∣∣∣ ≤ α3 (ẽ) ,

[
∂V

∂e
(ẽ)

]⊺
P
∂V

∂e
(ẽ) ≥ α4 (ẽ) . (8)



whereα1(·), α2(·), α3(·) and α4(·) are class-K functions
andP = P ⊺ > 0. �

Remark 6: If this BLF is always bounded for anyt ∈
[0, Tf ], for any iteration, this indicates that output constraints
are satisfied. The role of the proposed output feedback
control law ensures that if the initial condition is within the
domain of the attraction, this barrier-Lyapunov function will
be always bounded for anyt ≥ 0. ◦

Remark 7:Many barrier functions in literature satisfy this
assumption. For example, log-type barrier function from [22]
and tan-type barrier function from [14]. ◦

With the existence of such a BLF function, an output
feedback controller is proposed to drive the output of the
system from violating the output constraints

u
fb =

∂V

∂e

(
e
⊺
e

ε2b

)
(9)

Remark 8:As the perfect tracking performance can be
achieved by using a suitable ILC algorithm, the role of pro-
posed output feedback law is to ensure that output constraints
are satisfied with possibly bad tracking performance in time
domain. When a better tracking performance is needed in
the transient response in iteration domain, an extra output
regulation control law,Ψ(e), can be incorporated into the
feedback loop. For example, the feedback loop can take the
form of ufb = Ψ(e) +

[
∂V
∂e

(e, εb)
]

to improve the tracking
performance in time domain. ◦

Proposition 1 shows that the output constraints are satisfied
when the proposed feedback (9) is used.

Proposition 1: Assume that Assumption 4 holds. For the
system (7) with zero initial state and control input coming
from (5) and (9), the output will satisfy|e(t)| ≤ εb, for all
t ∈ [0, Tf ] whenuff = 0.

Proof: Taking the time derivative of BLFV along the
trajectories of (7) yields,

V̇ =

[
∂V

∂e
(ẽ)

]⊺
ė

=

[
∂V

∂e
(ẽ)

]⊺ ((
Ċ + CA

)
δx+ CBur − CB

∂V

∂e
(ẽ)

)

−

[
∂V

∂e
(ẽ)

]⊺
CB

(
sat

([
∂V

∂e
(ẽ)

]
,u∗

)
−

∂V

∂e
(ẽ)

)
.

(10)

As the saturation function satisfies global Lipschitz continu-
ity condition, there exists a positive constantL1 such that

∣∣∣∣sat
([

∂V

∂e
(ẽ)

]
,u∗

)
−

∂V

∂e
(ẽ)

∣∣∣∣ ≤ L1

∣∣∣∣
∂V

∂e
(ẽ)

∣∣∣∣ (11)

Based on the Assumption 3, (10) can be re-written as
V̇ ≤ Curα3(ẽ)− (1− L1)α4(ẽ), (12)

where Cur = Cu + Cr, Cr = max
t∈[0, Tf ]

∣∣∣
(
Ċ + CA

)
δx

∣∣∣,
Cu = max

t∈[0, Tf ]
|CBur |. Hence there exists a domain of the

attractionD such thatV̇ ≤ 0 for any |e| ≤ D. Noticing that
V (0) = 0 as ẽ(0) = 0 due to Assumption 2. Consequently,
there exists a positive constantM such thatV (t) ≤ M for
all t ∈ [0, Tf ]. Hence the output constraints are satisfied.
This completes the proof. �

The proposed output feedback (9) can satisfy output con-
straints. But the tracking performance cannot be guaranteed.

Next shows that by incorporating the proposed output
feedback with a feed-forward ILC law, the perfect tracking
performance can be achieved without violating input and
output constraints.

IV. MAIN RESULT

With both output feedback (9) and feed-forward ILC (6)
and input constraints (5), a sufficient condition is obtained to
ensure the convergence of the tracking error in the presence
of input and output constraints.

Theorem 1:Assume that the system (3) satisfies the As-
sumptions 1–3. Assume that Assumption 4 holds. Then the
closed loop system with control laws (5), (6) and (9) achieves

1) perfect tracking performance in the presence of input
and output constraints such thatlim

i→∞
ei = 0 uniformly;

2) uniform boundedness andL2 norm convergence of
feed-forward control input, i.e.lim

i→∞
u
ff
i = ur,

if the convergence condition:|Im − ΓCB| < 1 is satisfied.
Proof: A barrier composite energy function (BCEF)Ei

proposed in [15] is used in this paper for the proof of the
theorem.

Ei(t) =e−λtVi−1(t) +

∫ t

0

e−λτ δu
ff
i

⊺

(τ)δuff
i (τ)dτ (13)

∀t ∈ [0, Tf ], i ∈ N , λ > 0, V0(t) = 0,

whereδuff
i = ur − u

ff
i . In order to ensure the satisfaction

of constraints in each iteration, the induction based proof
technique similar to [15] is used in this proof. Noted that
there exists a postive constant∆1 such‖ei‖s ≤ ∆1 for any
iteration.

Firstly,E1 is finite asV0 = 0 anduff
1 = 0. By Proposition

1, the output constraints are satisfied.
Secondly, we will show thatEj+1 ≤ Ej . This will lead

to the conclusion thatej+1 satisfy output constraints.
The difference in BCEF between two consecutive itera-

tions is given by∆Ej+1 = Ej+1−Ej . From (13), it follows:

∆Ej+1 =e−λt (Vj − Vj−1)

+

∫ t

0

e−λτ

(∣∣∣δuff
j+1

∣∣∣
2

−
∣∣∣δuff

j

∣∣∣
2
)
dτ . (14)

Let us first establish a few relations that is useful for the
proof of theorem. The first term in (14) can be written as:

e−λtVj =

∫ t

0

e−λτ V̇jdτ − λ

∫ t

0

e−λτVjdτ . (15)

But V̇j can be written as:

V̇j =

[
∂Vj

∂e

]⊺ ((
Ċ + CA

)
δxj + CBδuj

)

≤ Cdα3 (ẽ) |δxj |+ |CB|α3 (ẽ) |δuj | . (16)

whereδuj = ur − uj , Cd = maxt∈[0,Tf ]

∣∣∣Ċ + CA
∣∣∣.

The solution of (7) is given by

δxj = Φ(t, 0)δxj(0) +

∫ t

0

Φ(t, τ)B(τ)δuj (τ)dτ , (17)

whereΦ(t, τ) is the state transition matrix.



However, as per Assumption 2,δxj(0) = 0. Using Lemma
2 on |δuj | yields:
|δuj | = |ur − sat(vj ,u

∗)| = |ur − vj − (sat(vj ,u
∗)− vj)|

≤
∣∣∣δũff

j

∣∣∣+ 2α3(ẽj). (18)

Taking the vector norm on each sides of (17) and using (18)
yields:

|δxj | ≤ Ca |δuj | ≤ Ca

∣∣∣δũff
j

∣∣∣+ 2Caα3(ẽj), (19)

whereCa = |B|
∫ t

0
|Φ(t, τ)| dτ .

Using completion of squares, there exists aβ > 0 s.t.

α3(ẽj)
∣∣∣δũff

j

∣∣∣ ≤
β

2
α2
3(ẽj) +

1

2β

∣∣∣δũff
j

∣∣∣
2

. (20)

Therefore, using (16), (19) and (20), there exists two positive
constantsν1 andν2 such that (15) can be written in the form:

e−λtVj ≤ −λ

∫ t

0

e−λτα1(ẽj)dτ + ν1

∫ t

0

e−λτα2
3(ẽj)dτ

+ ν2

∫ t

0

e−λτ δũ
ff
j dτ . (21)

Substituting (7) into (6) yields:
δu

ff
j+1 =δũ

ff
j − Γėi = Pδũff

j + zj , (22)

whereP = (Im − ΓCB) and zj = −Γ
(
Ċ + CA

)
δxj +

ΓCB(δũff
j − δuj).

Using Lemma 2 on
∣∣∣δũff

j − δuj

∣∣∣ yields∣∣∣δũff
j − δuj

∣∣∣ =
∣∣∣uj − ũ

ff
j

∣∣∣ =
∣∣∣sat(vj ,u

∗)− vj + u
fb
j

∣∣∣

≤2
∣∣∣ufb

j

∣∣∣ = 2α3(ẽj). (23)

Using (23) and (19), it is further possible to show that there
exists constantsCs, Ct such that

|zj | ≤ Cs

∣∣∣δũff
j

∣∣∣+ Ctα3(ẽj). (24)

Applying Lemma 1, followed by substituting (22) in the
second term of difference of BCEF yields:∣∣∣δuff

j+1

∣∣∣
2

−
∣∣∣δuff

j

∣∣∣
2

≤ δu
ff
j+1

⊺

δu
ff
j+1 − δũ

ff
j

⊺

δũ
ff
j

= −δũ
ff
j

⊺

(Im − P⊺P)δũff
j + |zj |

2
+ 2z⊺jPδũ

ff
j

≤ −λp

∣∣∣δũff
i

∣∣∣
2

+ |zi|
2
+ 2 |zi|

∣∣∣Pδũff
i

∣∣∣ , (25)

whereλp = λmax(Im−P⊺P). If |P | < 1, thenλp > 0. There
exists aΓ for a givenCB which satisfies this condition.
This condition is same as the convergence condition from
CM based analysis when D-type ILC is used without input
saturation and output constraints.

Substituting forzj from (24) in (25) and using completion
of squares (20), it can be shown that there exists two positive
constants:β1 andβ2 such that (25) can be written as:∣∣∣δuff

j+1

∣∣∣
2

−
∣∣∣δuff

j

∣∣∣
2

≤ −(λp − β1)
∣∣∣δũff

i

∣∣∣
2

+ β2α
2
3(ẽj).

(26)

Finally, substituting (26) and (21) into (14) yields:

∆Ej+1 ≤− λ

∫ t

1

e−λτα1(ẽj)dτ + ν1

∫ t

0

e−λτα2
3(ẽj)dτ

− (λp − ν2)

∫ t

0

e−λτδũ
ff
j dτ , (27)

where ν1 = ν1 + β2 and ν2 = β1 + ν2. It is therefore
possible to find aλ > 0 andλp > ν2 for someβ > 0 such
that∆Ej+1 ≤ 0. This leads toej ∈ D. So by induction, for
any j ∈ N , the constraints are satisfied.

Moreover, asEj is non increasing along the iteration axis,
it is possible to conclude that the tracking error and feed-
forward control input uniformly converges, based on the
similar conclusions in [11], [15]. This completes the proof.
�

V. ILLUSTRATIVE EXAMPLES

For the illustration purpose, atan-type barrier function
proposed in [13] is used in this section which satisfy the
properties given in Assumption 4. It has the following form

V = k
ε2b
π

tan

(
πe⊺e

2ε2b

)
, (28)

wherek > 0 is a gain constant. This results in the following
feedback control as per (9):

u
fb = k sec2

(
πe⊺e

2ε2b

)
e. (29)

Two illustrative examples are given in this section. The
first one is a single-input-single-output system from the
motivating example given in this paper. The second one is a
hypothetical MIMO LTV system.

A. Revisiting the motivating example

A feedback gaink = 0.01 is chosen to demonstrate
the effectiveness of proposed feedback. A saturation limit
of u∗ = 1 is selected. The simulation results with the
proposed feedback, shown in Fig. 3, indicates that the output
constraints are satisfied in all iterations without violating the
input constraints.
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100
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Fig. 3. Supremum norm from motivating example with proposedfeedback

B. MIMO LTV Model

Next a MIMO system is considered, i.e., an LTV system

(3), with state matricesA =




0 1 e−0.5t 0
0 −2 0 −1.5
0 e−0.5t 0 1
0 −0.75 sin2(t) 2


,

B =




0 0
2.5 + sin2(t) 0.45 + e−0.5t

0 0
0.45 + e−0.5t 3


, and

C =

[
0 1 + e−2t 0 0
0 0 0 1 + e−2t

]
. Let

the output reference trajectory beyr(t) =



[
0.4 sin 3

(
π t

Tf

)
, 0.5 sin 3

(
π t

Tf

)
cos

(
π t

Tf

)]⊺
. The

error boundεb = 0.2 and input saturationu∗ = 1 are
chosen for simulation.

For the feedback control, the gain constantk = 0.2 is
selected and the finite time[0, 3] is considered. For the
design of ILC algorithm, a constant feedback gainΓ =[
0.247 −0.037
−0.037 0.206

]
is chosen, which satisfies the conver-

gence condition:|I2 − ΓC(t)B(t)| ≤ 1 ∀t ∈ [0, 3]. The
simulation is performed for50 iterations. The variation of
supremum norm of tracking error‖ei‖s is shown in Fig.
4, which demonstrates the convergence of tracking error. A
zoomed view is provided to clarify that the output constraints
are not violated in any iteration during the transient stages
of learning. The output trajectories for a few iterations
1,5,10,15 and 50 fory1(t) are shown in Fig. 5, which clearly
demonstrates that the trajectories are constrained withinanεb
bound with respect to reference trajectory. The control input
signals of those iterations are shown in Fig.5. It indicates
that both the input constraints and the output constraints are
satisfied.
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Fig. 4. Supremum norm-MIMO LTV model
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Fig. 5. Total Input,v = ũff + ufb for control input-1, MIMO LTV
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Fig. 6. Output Trajectory,y1(t) from MIMO LTV

VI. CONCLUSION

This paper proposed an output feedback-based ILC
scheme to satisfy both the input and output constraints for a
linear-time-varying system. In the proposed control scheme,
the output feedback design is based on barrier Lyapunov
function and the ILC is based on contraction mapping based

approach. With the help of a barrier composite energy
function, the proposed control law can ensure the perfect
tracking performance in iteration domain without violating
the input and output constraints in time-domain. The future
work includes extending this control framework to a wider
class of nonlinear systems.
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