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Abstract— Due to hardware constraints and safety require-
ments, many engineering systems have to satisfy input and
output constraints. This paper proposes a new feedback-bad
iterative learning control (ILC) that can ensure the satisfaction
of input and output constraints for linear-time-varying (L TV)
systems. The proposed control structure consists of an outp
feedback loop, a feed-forward ILC and a hard constraint for
input. A barrier function is used to assist the design of the
output feedback in order to satisfy the output constraints.An
appropriate saturation function is used in the design of ILCloop
to address the input constraints. By using a suitable compds
energy function, the main result of this paper shows that the
desired trajectory can be learned using the proposed contto
structure without violating the input and output constrain ts.
Simulation results are presented to demonstrate the effeise-
ness of the proposed control structure.

. INTRODUCTION

considered. For example, due to constraints from actuators
the input signals are usually within a certain range. The
output signals are measured by sensors, which have a range
for the measurements. Moreover, sometimes due to safety
reasons, some output signals cannot be over a certain range.
Such examples include the temperature or pressure in a
chemical reactor, the safety region for rehabilitationatid
systems in order to protect patients, the traffic flow of
an urban region, etc. Hence it is important to ensure the
satisfaction of these constraints in every iteration.

However, many feed-forward ILC algorithms ignore input
constraints and output constraints in the design. Eveagho
the perfect tracking performance can be achieved in steady-
state in the iteration domain, during the transient behav-
ior in iteration domain, either output constraints or input
constraints might be violated. In ILC literature, constexd

Most of the classical control techniques are model-basegptimization based approach in super vector formulatian ha

which requires sufficient knowledge of the system of inpeen used in [7]-[10] to handle constraints in discretestim
terests. Iterative learning control (ILC), on the other than systems. In continuous-time systems, input constraints ha
is a data-driven or model-free control design methodologyeen handled in [11], [12] and output constraints in [13]-
for systems that perform repetitive tasks over a finite timegy5] ysing barrier functions when the state information is
interval. By exploiting the knowledge gained through repayailable. To the best of author's knowledge, simultaneous
efitions, ILC design can relax the requirement of modedatisfaction of both input and output constraints in the-sta
information, leading to a perfect tracking performanceroveyard feed-forward ILC setting for continuous-time systems
a finite time interval when iteration tends to infinity. It has not been addressed.

has found wide applications in chemical batch processes,The technique to handle output constraints is to use barrier
robotic manufacturing, robotic rehabilitation systemsl @0 function (or barrier certificate), which has been widelydise
on, where the tracking task is repetitive in nature (for morgy designing feedback control law to handle output con-
details on its applications, see survey papers [1]-[3]).  straints, see, for example [16]-[18] and references therei

Many ILC algorithms have a feed-forward struc-Generally speaking, when the output constraints are é@d|at

ture, which has the form:uf// (t) = wl//(t) +
f(ek(t), . ek,M(t)), vt € [0, Tf],/{ <ii1=1,2,..., and
M is an integer. Here the control input @t+ 1) iteration,
“{1{1
of tracking error at previous iterations,, ex_1,...,ex_n

for tasks in finite time interval0, T]. The beauty of feed-

the barrier function will approach to infinity. Thus, if the
control input takes the derivative of the barrier function,
when the output is close to the output constraints, the obntr

is the sum of previous iteration input and a functionainput will drive the output away from the constraint.

It is noted that when introducing the barrier function
and its corresponding control law using its derivativesthi

forward ILC is its simplicity in design and implementation.control law is in the form of output feedback. Intuitively,
By using either contraction mapping method [4], [5] orby incorporating this output feedback with the feed-fordvar
composite energy function (CEF) [6], the feed-forward ILOLC, it is possible to handle both input and output constsain
can be applied to a large class of engineering systems wiHowever, these two control laws might conflict each other

limited knowledge.

in the transient of iteration. Hence, a careful analysidist

When implementing the proposed ILC algorithms in enneeded.
gineering applications, the physical constraints havedo b This paper handles the output-tracking problem in ILC
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for continuous-time linear-time-varying (LTV) systemstire
presence of input and output constraints. In order to siypli

dhe design of ILC, a standard D-type ILC algorithm is used,

which can ensure the perfect tracking performance without
any constraint for the dynamic system with a relative degree
one. A output feedback control law is incorporated with the
feed-forward ILC. This output feedback is designed using



a barrier function, which has a very general form and carobot picks and places the mad¢$ during the operation
prevent violating the output constraints. A hard constram cycle, leading to a LTV system.

input signal is also added to the system. By using a suitableLet ao(t) = W andaq (t) = IT'#KW When
composite energy function, it is shown that the proposetthe robot is engaged with masd, ap = 1 anda; = 5

control structure is able to handle both input and outpuitherwise for the case with/ =0, ap =5 anda; = 18.

constraints under appropriate assumptions. The reference trajectory is shown in Fig.1. It has been
shown that the following ILC law works for the system (1)
1. PRELIMINARIES AND PROBLEM [6]: £f 4 . ff
FORMULATION uily (t) =ui’ +7éi(t), ui’ (t) =0, )

Firstly, the notations and needed definitions used in thiShe simulation is performed fof = 0.05 which satisfies
paper are introduced. L& denotes the set of real numbersthe convergence condition given in [6] for systems with
and NV denotes the set of natural numbers. The set of adl relative degréeof one and the re-setting condition (see
continuous functions if0, 7] that are differentiable up to Assumption 2). The performance requirement needs that
4" order is denoted b¢7[0, Ty] for anyj € N. the output satisfiegy(t) — yq(t)] < e, with g, = 0.2.

For a vectorx € R", |x|2 £ xTx. A vector is called The supremum norm of tracking error when ILC law (2)
positive > 0) if each element is positive. For anyis used to evaluate the tracking performance. As shown in
x(t) € C[0, Ty], the supremum norm is defined fs|, £ Fig. 1, though tracking error converges, the errors in the

max [x(t)|__, where|x| = max |27 andz’ denotes first 20 iterations violate the output constraint. This show
t€l0, 7y] JEM-m] - . thata standard ILC is not able to handle output constraints.
j" element ofx. The £* norm is defined agx||.> = New ILC laws are needed to take care of input and output
(fon |x(7)|2d7) : constraints simultaneously.

°©

For a given matrixA € R"*™, | A| indicates its induced
matrix norm. A square matrid = AT > (>)0 indicates

1
that this matrix is symmetric and positive definite (positiv O-E
semi-definite). For a square symmetric matax \,,;,, (4) os
stands for its minimum eigenvalue. The notatibndenotes

the identity matrix of dimensiom. 0 PR s 5 2 40 G 8 10
Definition 1: A continuous functionx : [0, a) — [0, o) me (soconds) o _

is said to belong to clask if it is strictly increasing and g_a) Ref(érence trajectory with opefl) Supremum norm of tracking error

. . . 10N moaes

a(0) = 0. It is said to belong to clask, if « = co and ) ) o

a(r) — oo asr — oo [19, Definition 4.2]. Fig. 1. Reference trajectory and supremum error- motigaéirample
Definition 2: Let v € R and v* > 0. The saturation

function is defined asat(u,u*) £ sign (u) min{u*, |ul}

for anyu € R whereu* > 0 is a scalar constant. For any i ) . ) o

u € R™ and a positive vecton*, the saturation function is  consider a linear time-varying (LTV) multiple-input-

defined asat(u, u*) = [sat(ul,ul’), - , sat(u™ um*)r. multiple-output (MIMO) square systeémof the following
The following lemmas are needed to facilitate the proofP™"

[
o

with mass without mass {with mass

—lle:lls

=
o
[

yr (rad/s)

Supremum error |le||s

=
o

A

o

B. Problem Formulation

of main results in this paper. x(t) =A(t)x(t) + B(t)u(?)

Lemma 1: [11, Property-3] For any givem,., u and y(t) =C(t)x(t), 3)
u* € R™ satisfying sat(u,,u*) = u, then the following . .
inequality holdsu, — sat(u,u*)|2 < |u, — u|2_  Wherex € R" denotes the state and u € R™ denote

) % m  the output and input vector respectively. The state matrice
Lemma 2: [11, Property-4] For anyu, u* andw € R X ) .
satisfyingu® > 0, if v = sat(a, u*)+w, then the following (A(t), B(t),C(t)) have appropriate dimensions and the ele-

inequality holds:sat(v,u*) — v| < |w|. 7 ments of the mat_rice_ﬂ(t)_, B(t), Q(t) are inC[0, T¥].
’ - The control objective is to design a sequence of control
A. A Motivating Example input {u;(t)},., such that the output of the system (3) can

. . s ., . . track a reference outpyt. € C*[0, T]. Moreover, this system
Consider a simple “pick and plgce one-link robotic Masg subjected to hard input and output constraints, which are
Y%nown a priori. The hard input constraint is the saturation
constraint at the total control input (as shown in Fig. 2)

whereas the output constraint is defined|pyt)| < k, for

a base point, with mas3a/ at the end effector. The robot
dynamics is given by a second order LTV model:

Ty =12 all t € [0, Ty] wherek, > 0 is the output limit.

L —b K; The tracking errore(t) is defined a®(t) = y..(t) — y(¢).
T M(t)L? 2t Iroaq + M(t)[ﬂu’ Remark 1:For a given reference trajectogy., the output

y =, (1) constraints can be converted to the constraints in terms of

. . . .. . 1w« i H _ - =
whereb is the viscous friction coefficient; is the actuator If the relative degree of system (3) #s thenCB = CAB = .- =

. . CA"™ 2B = 0mxm andCA™ 1B # 0, xm” [21, p.387].
gain, andL is the Iength of robot arm. Heré, .4 represents 2A MIMO square system is defined as a system which has the same

the moment of inertia of the arm about the base point. Th#mensions for the input and output vectors



tracking error. That is, there exists ap > <; such that if constraints. The second one is to use a standard ILC control
le(t)] < e, the output constrainty(t)| < k, is satisfied. to ensure the perfect tracking with the consideration ofitnp
Such a conversion simplifies the design of feedback badonstraints. These would lead to the following control laws
control law at the cost of conservative design of output as
po_irn;e(i ?IUt i ti ite standard i ILCC:> ualf) sai(vi({), w)
e following assumptions are quite standard in . - b

Assumption 1:There exists a reference input, € vi(t) =af’ (1) +ul"(t), vt € [0, Ty], ®)
C[0, Ty] and a reference state. € C'[0, Ty] for any given
reference outpuy, € C'[0, Ty] such that the following
relationship holds

where /7 (t) = sat(ul’(t), u*) represents the modified

(2

input from the ILC control law andlsz(t) is the feedback

. control.
% (1) =A% () + B(t)ur (1) Remark 5:As the system (3) is LTV, with the bounded
yr(t) =C(t)x,(¢). (4)  control input coming from hard input constraints, the state

trajectories are uniformly bounded for any given fixed time
interval t € [0, Ty]. That is, there exists a compact set
D C R"™ such thatx;(t) € D, for anyi € N and any

Remark 2: Assumption 1 ensures that there exists a cod- € [0,T¢]. It is noted that the control objective is to

trol input,. that can track the desired signal. Both refer- ensure the perfect output tracking with the bounded state

ence input and the reference output satisfy the correspgndit Je¢tores: Hence, the output feedback is sufficient suen
constraints the perfect tracking. o

Let (), denotes the signal at th# iteration As the system has the relative degree one, for simplicity,
Assumption 2:It is assumed that the system (3) executeg1e following D-type feed-forward ILC is used:

Furthermore, for the givem* > 0 and k, > 0, it has
sat(u,(t),u*) = u,.(t) for any ¢ € [0, Tf] and|y,| < ky.
O

a repetitive tracking within a finite time intervale [0, T, Ul_ff1 (t) :ﬁff(t) +T(bei(t), u{f(t) -0, (6)
and satisfies the identical initial conditios;(0) = x,.(0) o ’
for any iterationi € V. O wherel'(t) € R™*™ > 0 is the learning gain. IT'(¢) is

Remark 3: Assumption 2 is a standard assumption in ILGdesigned to satisfy some convergence condition, the gerfec
design [6]. This assumption can be relaxed if the perfettacking performance can be achieved when there is no
tracking performance is not required. o output constraints [5], [6].

Assumption 3:The system (3) has a relative degree of Next will provide the design of designing output feedback
one. In addition, for the simplicity of presentation, it is@ control law.
assumed tha€'(t)B(t) > 0, for all ¢t € [0, T}]. O ) .

Remark 4: Assumption 3 is a standard assumption whe- Design of output feedback in presence of output con-
ILC design is based on Contraction Mapping (CM) basegtraints
analysis technique. It is possible to accommodate systemslet the state tracking errodix(t) = x,(t) — x(t). The
with a higher relative degree using appropriate modificetio error dynamics can be obtained from (3) and (4) as

of ILC algorithm. ° ox(t) =A(t)ox(t) + B(t)ou(t)
[Il. CONTROLLER STRUCTURE AND DESIGN e(t) =C(t)ox(t) (7)

The proposed control structure is shown in Fig 2. 'Whereéu(t) = u,(t) — u(t) wherex, andu, come from
consists of an output feedback loop and a feed-forward logRssumption 1.

using an ILC. A hard constraint of input is implemented via Tpe output feedback is designed on the basis of some
an input saturation. The role of the output feedback coletrol parrier function. When output constraints are violate@, th
is to ensure that output constraints are satisfied wher@as ¥y rier function will approach to infinity. There are many
ILC learns the desired control input in the presence of iNpYnciions that can be served as the barrier function [14]-
constraints. Hence, there are two steps in the design. Thgs]. Here, to characterize such a class of barrier funstion
the following assumption is used.

For ease of representation, consider the non-dimensional

wfr A\ 1

. _ A €Te .
Softinput positive parametef = - in the rest of the paper.

constraint

Assumption 4:There léxists a continuous differentiable
-------------------------------------------- barrier-Lyapunov-function (BLF)} : [0,1] — R>¢ such

! Output that the following properties hold:
! Feedback + | !
: Basct}l on barrier 123::5? H a1 (a S V (a S (6%} (a 5
D e ——— i V0)=0; V(1) =oc0,
Closed loop system (Z_V (g) < as (a7
e
Fig. 2. Block diagram of the proposed control structure oV LI
_ _ _ [3— (év] Poe (@) 2 ai (). (8)
first one is to design an output feedback to handle output € €



where a; (), as(-), asz(-) and ay(-) are classE functions The proposed output feedback (9) can satisfy output con-

and P = PT > 0. O straints. But the tracking performance cannot be guardntee
Remark 6:If this BLF is always bounded for any € Next shows that by incorporating the proposed output

[0, Ty], for any iteration, this indicates that output constraint$eedback with a feed-forward ILC law, the perfect tracking

are satisfied. The role of the proposed output feedbaglerformance can be achieved without violating input and

control law ensures that if the initial condition is withinet output constraints.

domain of the attraction, this barrier-Lyapunov functioill w V. MAIN RESULT

be always bounded for any> 0. o _ '
Remark 7:Many barrier functions in literature satisfy this ~With both output feedback (9) and feed-forward ILC (6)

assumption' For examp|e' |Og_type barrier function from] [2 and Input constraints (5), a SUﬁlClentlcondltlon. is obtdit®

and tan-type barrier function from [14]. o ensure the convergence of _the tracking error in the presence
With the existence of such a BLF function, an outpuff input and output constraints. o

feedback controller is proposed to drive the output of the Theorem 1:Assume that the system (3) satisfies the As-

System from Vio|ating the Output constraints SumptionS 1-3. ASSU-me that Assumption 4 hO|dS. Then the
OV /eTe closed loop system with control laws (5), (6) and (9) achéeve
u’t = e (—2) 9) 1) perfect tracking performance in the presence of input
e\ % and output constraints such thliﬁl e; = 0 uniformly;

Remark 8:As the perfect tracking performance can be 2) uniform boundedness and® norm convergence of
achieved by using a suitable ILC algorithm, the role of pro- feed-forward control input, i.elim N
i—soo © m

posed output feedback law is to ensure that output congtrain
are satisfied with possibly bad tracking performance in timé the convergence conditionf,, — I'CB| < 1 is satisfied.
domain. When a better tracking performance is needed ffroof: A barrier composite energy function (BCER);
the transient response in iteration domain, an extra outpBfoposed in [15] is used in this paper for the proof of the
regulation control law,¥(e), can be incorporated into the theorem. .
feedback loop. For example, the feedback loop can take theg, (1) —¢=v;_, (¢) +/ ef)‘T(su{fT(T)(Su{f(T)dT (13)

0

form of u/® = W(e) + [9Z (e,es)] to improve the tracking
performance in time domain. o Vt € [0,Ty],i € N,A >0, Vo(t) =0,

Proposition 1 shows that the output constraints are satisfie i i ) )
when the proposed feedback (9) is used. wheredu;’ =u, —u;’. In order to ensure the satisfaction

Proposition 1: Assume that Assumption 4 holds. For theOf constraints in each iteration, the induction based proof
system (7) with zero initial state and control input coming€chnique similar to [15] is used in this proof. Noted that
from (5) and (9), the output will satisfje(t)| < =, for all here exists a postive constay such|le;||, < A, for any
t € [0, Ty] whenuf/ = 0. iteration.

Proof: Taking the time derivative of BLF/ along the _ Firstly, £ is finite asVy = 0 and_u{f = 0. By Proposition
trajectories of (7) yields 1, the output constraints are satisfied.

' oV T Secondly, we will show that);; < Ej. This will lead
V= [— (é)} é to the conclusion that;,, satisfy output constraints.
Oe ; The difference in BCEF between two consecutive itera-
_ [(Z_Z (a} ((C n CA) 5x + CBu, — CB(Z_Z (a) tions is given byAE; 1 = Ej11 — E;. From (13), it follows:
T AE; 1 =e M (V; = Vi
[ on(n([Fee] ) -gem) T e
10) +/0 e (‘511;.‘{1 - ‘mg‘f‘ )dT. (14)

As the saturation function satisfies global Lipschitz comti Let us first establish a few relations that is useful for the
ity condition, there exists a positive constdnt such that  proof of theorem. The first term in (14) can be written as:

sat (| e @) ) - @] < 1| G @

Based on the Assumption 3, (10) can be re-written as But V7 can be written as:

<L

t t
(11) e—”Vj:/ e—”deT—A/ e MVidr.  (15)
0 0

V < Cur -(1-1L , 12 : V1" /.
B @s(8) = 1)ea(®) (12) i= [—8(5] ((C’ + C’A) ox; + C’Béuj)
h ur — U T r = . A y
where Cyr = Cu + Cr, Cr = max (¢ +0a)ix] < Cyas (3) |65 + |CBl as (@) [ou,|. (16
C, = I[r&a)% | |C'Bu,|. Hence there exists a domain of the
te(0, Ty

Where5Uj =u, —uy, Cy = maXge(0,7y] ’C + CA‘

attractionD such thatV’ < 0 for any |e| < D. Noticing that The solution of (7) is given by
V(0) = 0 ase(0) = 0 due to Assumption 2. Consequently, t
there exists a positive constamf such thatV(t) < M for dx; = O(t,0)0x;(0) +/ O(t, 7)B(r)ou,(r)dr, (17)
all ¢ € [0, Ty]. Hence the output constraints are satisfied. 0

This completes the proof. O where®(¢, 1) is the state transition matrix.



However, as per Assumption & ;(0) = 0. Using Lemma where7; = 11 + 8 and vy, = (1 + 1». It is therefore
2 on|du,| yields: possible to find a\ > 0 and A, > 7, for someg > 0 such
|0u;| = |u, — sat(vj,u*)| = Ju, —v; — (sat(vj,u”) —v,)| thatAE;;; <0. This leads tce; € D. So by induction, for
~ff - any j € N, the constraints are satisfied.
= ’5“3‘ ’ +203(¢5)- (18) Moreover, ast; is non increasing along the iteration axis,
Taking the vector norm on each sides of (17) and using (18)S Possible to conclude that the tracking error and feed-

yields: forward control input uniformly converges, based on the
5,1 < Ca Jbuy] < Ci 61];7‘ +2C08(%), (19) %mnar conclusions in [11], [15]. This completes the proof
t
whereC, = |B] [, [®(t,7)| dT. , V. ILLUSTRATIVE EXAMPLES
Using completion of squares, there exist§ & 0 s.t. . . . .
el B o 1| fs12 For the illustration purpose, &an-type barrier function
as(€;) |0u;’| < Sa3(€;) + 35 ’5% (20)  proposed in [13] is used in this section which satisfy the
) . .. properties given in Assumption 4. It has the following form
Therefore, using (16), (19) and (20), there exists two pasit )
; ; . T
constants/ andz/gt such that (15) can betwrltten in the form: V — 1 tan <7T2e 2e>7 (28)
e MV < —)\/ eiATal(gj)dT—i—ul/ e Ma3(e;)dr T %
Ot 0 wherek > 0 is a gain constant. This results in the following
i VQ/ e—)crgﬁ{de' (1) feedback control as per (9):
0 ' meTe
1o _ 2
Substituting (7) into (6) yields: w = ksec ( 227 )e' (29)
sull, =sul/ —Te; = Poul’ +z;, (22)

Two illustrative examples are given in this section. The

whereP = (I,, —-T'CB) andz; = —T (C+OA) 5%; + first one is a single-input-single-output system from the
it motivating example given in this paper. The second one is a
[CB(ou;’ — duy). hypothetical MIMO LTV system.
Using Lemma 2 orju!/ — du;| yields

A. Reuvisiting the motivating example

~ff N I - ) — v . .
‘5“3' —ouy| = |uy — Uy ‘_ ‘Sat(vﬂ’“ )= Vit ‘ A feedback gaink = 0.01 is chosen to demonstrate
fb ~ the effectiveness of proposed feedback. A saturation limit
< o = ). . . . .
—2‘uﬂ ‘ 203(5) (23) of w* = 1 is selected. The simulation results with the
Using (23) and (19), it is further possible to show that ther@roposed feedback, shown in Fig. 3, indicates that the outpu
exists constant§’,, C; such that constraints are satisfied in all iterations without vialgtihe
2] < C, ‘6ﬁ§.f’ + Cras(E)). (24) input constraints.
_= 10°
Applying Lemma 1, followed by substituting (22) in the =
second term of difference of BCEF yields: 8 101) el
2 2 T ~fFT o~ 3 Zoomed View —€b
‘6ujf-}:1 — ‘6ujf-f‘ < oufl, oufl, - suf’ suf! g =
510°F02
= —6u!/ (L, — PTP)ow + || + 227 Poul’ E b
B 2 ) oy I 10_3 1 6 1116 21 26 3135
<=\ §uff + |Zi| +2|Zi| psul/|, (25) 0 10 20 30 Iice)ra?icgmsoi 70 80 90 100

where\, = A4z (I, —PTP). If |P| < 1, then), > 0. There
exists al’ for a given C'B which satisfies this condition.
This condition is same as the convergence condition from
CM based analysis when D-type ILC is used without inpug  pMIMO LTV Model
saturation and output constraints. . . .

Substituting forz; from (24) in (25) and using completion Next a MIMO system is considered, "e_'b.%tn LTV system
of squares (20), it can be shown that there exists two pesitiv 0 1 ¢ 0

Fig. 3. Supremum norm from motivating example with propofesdiback

constant52;81 and [3225uch that (25) can bg written as: (3), with state matrices! = 8 e*_0-25t 8 —}.5 ,
o[ = Joul ! <~ — g [0l + Baad(@). 0 —0.75 sin®(t) 2
(26) 0 0
Finally, substituting (26) and (21) into (14) yields: B _ 2.5 +Sin2(t) 0.45 +O . . and
AEj4 < — )\/ eiATOél(’evj)dT+71/ eiATOég(’evj)dT 0.45 4+ ¢—0-5¢ 3
L 0 —2t
0 1+4e 0 0
! ¢ = o], Let
—(Ap—vg)/ e moulldr, (27) 0 0 0 l+e2
0 the output reference trajectory bey,(t) =



3 t .3 t ¢t \]7
{0.45111 (ﬂ'T—), 0.5sin (ﬂ'T—f) cos(ﬂ'T—fH . The
error boundes, = 0.2 and input saturatiorn* = 1 are
chosen for simulation.

For the feedback control, the gain constant= 0.2 is the

approach. With the help of a barrier composite energy
function, the proposed control law can ensure the perfect
tracking performance in iteration domain without violafin

input and output constraints in time-domain. The future

selected and the finite tim@, 3] is considered. For the Work includes extending this control framework to a wider

design of ILC algorithm, a constant feedback gdin=
0.247  —0.037
—0.037  0.206
gence condition]l> —T'C(t)B(t)] < 1 ¥t € [0,3]. The
simulation is performed fob0 iterations. The variation of
supremum norm of tracking errdfe;||, is shown in Fig. [2]
4, which demonstrates the convergence of tracking error. A
zoomed view is provided to clarify that the output constisin
are not violated in any iteration during the transient stage [3]
of learning. The output trajectories for a few iterations
1,5,10,15 and 50 fog' (t) are shown in Fig. 5, which clearly
demonstrates that the trajectories are constrained vathip
bound with respect to reference trajectory. The controliinp
signals of those iterations are shown in Fig.5. It indicatess)
that both the input constraints and the output constrairgs a
satisfied. ]

is chosen, which satisfies the conver-
[1

(4

. 10°
= - 7
. Zoomed View [lells [7]
o e,
£ 0.2
< 5 - |
g 10 ]
= 0.1
g
<
= 5 10 15 20 25 30 [9]
A 1010 | ‘ ‘ |

0 10 20 30 20 50

Iterations, i

[10]

Fig. 4. Supremum norm-MIMO LTV model
[11]

‘7Trial— 1--Trial-5-Trial-10--Trial-1 SfT‘rial»last‘

[12]

(23]

[14]

[15]
1

[16]

y'(t)

[17]

0 . 2 3 (18]
time

Fig. 6. Output Trajectoryy! (t) from MIMO LTV [19]

[20]

VI. CONCLUSION

This paper proposed an output feedback-based IL@ll
scheme to satisfy both the input and output constraints for[22]
linear-time-varying system. In the proposed control sahem
the output feedback design is based on barrier Lyapunov
function and the ILC is based on contraction mapping based

class of nonlinear systems.
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