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Abstract

In the force control of cable-driven parallel
robots (CDPRs), inverse dynamics (ID) algo-
rithms are required that can consider the actu-
ation constraints imposed by cables. As a re-
sult, a variety of different ID solution methods
have been developed. This paper uses the open-
source Cable-robot Analysis and Simulation
Platform for Research (CASPR) to compare
the properties exhibited by different ID solvers
over a wide range of different CDPR types with
different mechanism parameters. The results
are analysed to provide better insight into de-
termining the appropriate ID solver for differ-
ent applications and a test set of CDPRs is de-
veloped to be used as a benchmarking set for
future ID research.

1 Introduction

Cable-driven parallel robots (CDPRs) are parallel robots
that use cables for the robot actuation instead of rigid
links. Due to properties like low inertia, CDPRs have
a number of advantages including a large operating
workspace and the capability to produce highly dynamic
movements, which leads to a range of potential industrial
applications [1; 2; 3; 4]. Nonetheless, the inability for ca-
bles to produce pushing forces induces a constraint on
the number of cables. To achieve full manipulation of a
CDPR, it is necessary that the number of cables, m, is
larger than the number of degree of freedoms (DoFs), n,
i.e., m > n, which results in actuation redundancy [5].

CDPRs can be controlled through either end-effector
position or force control, where the cable lengths or
forces need to be resolved for, respectively. For position
control, the cable lengths required to achieve a certain
configuration of the mechanism are solved through in-
verse kinematics (IK). As cable forces are not directly
controlled in IK, its use can result in cable slack or un-
desirable high tensions [6].

In contrast to position control, force control uses the
system’s dynamics and equations of motion, to generate
a desired motion for the mechanism through the deter-
mination of a set of feasible cable forces. This process
is also known as inverse dynamics (ID). When m > n,
ID can have potentially infinite different solutions due to
actuation redundancy. This redundancy gives flexibility
in achieving different objectives, such as the minimiza-
tion of cable forces. At the same time, the redundancy
raises the problem of how to determine the best set of
cable forces among the infinite number of solutions.

To solve the redundant ID problem, a number of dif-
ferent methods have been developed. These methods can
generally categorised into: 1) optimisation based; and 2)
heuristic based methods. Optimisation based methods
aim to find a set of cable forces that optimise a physically
meaningful objective function. A number of different
objectives have been considered including the minimiza-
tion of the 1-norm [7; 8], 2-norm [7; 8] and ∞-norm [9]

of the cable forces as well as the calculation of “opti-
mally safe” force distributions [6]. These methods typi-
cally provide physically desirable cable force selections.
However, the optimisation based methods possess high
worst-case computational time, limiting their applicabil-
ity to real time systems. In light of this, other method-
ologies focus more on the computational efficiency and
the boundedness of the number of computations [10; 11;
12]. These methods make use of heuristics and there-
fore do not explicitly consider optimality. Different ID
methodologies produce solutions with different proper-
ties such as continuity and real-time capability.

Given a collection of ID solvers, it is an important
and difficult task for CDPR researchers to determine the
right solver for their robot and application. For instance,
with an operating frequency requirement, a particular ID
method may not be able to produce solutions. Further-
more, a change in the CDPR, such as the number of ca-
bles, can result in different ID methods having different
changes in their computational time. A clear compari-
son of how different solvers perform in various situations



can therefore help researchers determine a suitable ID
method.

To evaluate the differences between solution methods,
Pott formulated a table that made a general comparison
of properties exhibited by different solvers, such as real-
time capability and continuity [11]. The computational
time of the different solvers was recorded and compared
by doing simulations on a single sample trajectory for
a single CDPR. Despite the general insight offered by
these tests, the issue of how these solvers perform for
CDPRs with different parameters including the number
of links, number of DoFs and number of cables, remains
unexplored. Due to the lack of variations in the CDPR
parameters tested, the comparison results can hardly be
extended to other CDPRs.

Traditionally, the evaluation of different ID methods
can be a challenging task. This is because the evalu-
ation should consider variations in CDPR parameters
such as the number of links, number of cables and num-
ber of DoFs, where for each variation it is necessary to
re-derive the system kinematics and dynamics. Recently,
an open-source platform CASPR [13], which uses a gen-
eralised model formulation [7] was developed. CASPR
is capable of modelling different types of CDPRs, pos-
sesses a library of different ID solvers and allows for sets
of CDPR trajectories to be simulated. Such a software
platform represent an ideal tool for the fair comparison
of ID solvers.

This paper uses the CASPR software framework to
both model different CDPR parameters and provide a
platform for the fair comparison of the performance of
different ID solvers. A range of different desirable ID
properties are proposed as tools for the analysis of ID
solvers. Through the generation and analysis of a set of
simulation results, the paper offers clearer insights for
the selection of the appropriate solver for different ap-
plications. Additionally, the set of test robots developed
represent a test set that can be used for the benchmark-
ing of future ID algorithms.

2 Background on Inverse Dynamics

Figures 1a and 1b show the configurations of a spatial
cable-driven robot (SCDR) and a multi-link cable-driven
robot (MCDR), respectively. For a CDPR with n DoFs
actuated by m cables, the system dynamics are given by
the equation of motion

M(q)q̈ + η(q̇,q) = −L(q)T f , (1)

where q ∈ Rn is the mechanism configuration (pose),
M(q) ∈ Rn×n refers to the mass-inertia matrix and
η(q̇,q) ∈ Rn is a vector formed by the centrifugal, Cori-
olis and gravitational terms. The terms M and η form
the system wrench which is related to the cable force
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Figure 1: Example CDPRs

vector f ∈ Rm×1 by the transpose of the Jacobian ma-
trix L(q) ∈ Rm×n. The cable forces are constrained to
be positive and are bounded by the minimum and max-
imum feasible cable forces, fmin and fmax, such that

0 ≤ fmin ≤ fi ≤ fmax, i ∈ {1, . . . ,m}. (2)

In the process of solving inverse dynamics (ID), a set
of cable forces, which satisfies the bound (2), should be
determined to achieve the desired motion specified by
the joint position q, velocity q̇ and acceleration q̈. Due
to the actuation redundancy and cable force constraints,
there exists either no feasible force set that can achieve
the desired motion or infinite feasible combinations of
cable forces that can produce the same desired motion.

2.1 Inverse Dynamics Solvers

Two main categories of solution methods have been de-
veloped for the redundant ID problem:

1. optimisation-based,

2. heuristic-based.

Optimisation-based methods

The main principle behind the optimisation approaches
is to minimise a physically meaningful objective function
while satisfying the constraints (1) and (2). The general
formulation of optimisation methods is as follows

f∗ = arg min
f

g(f),

subject to M(q)q̈ + η(q̇,q) = −L(q)T f ,

0 ≤ fmin ≤ fi ≤ fmax, i ∈ [1,m], (3)

where the optimal force f∗ is determined by minimising
the objective g(f) while satisfying the constraints.

A common class of objective function corresponds to
the p-norm of the cable force vector g(f) = ‖f‖p, where
p ∈ {1, 2, ...,∞}. When (3) is solved with p = 1 and
p = 2, the problem becomes a linear program (LP)
[7], and a quadratic program (QP) [7], respectively. As
the objective functions in both cases are convex, opti-
mal force distributions can be found by well-established



convex optimisation techniques. When p = ∞ [9],
g(f) = ||f ||∞ = max |fi|, i ∈ [1,m], (3) can be solved by
the minimum infinity-norm method developed by Cad-
zow [14] and Shim [15], and further improved by Ha and
Lee [16], which formulates the problem as a LP.

Instead of using a cable force norm minimising objec-
tive function, Borgstrom et al. [6] determine the ‘opti-
mally safe’ cable force distribution which represents the
cable force that maximises the distance to the constraint
boundaries. This approach is suggested as a safe way to
determine cable forces such that there is no slack or cable
breakage and can be formulated as the optimisation

S∗ = max
f ,S

S,

subject to M(q)q̈ + η(q̇,q) = −L(q)T f ,

(fmin + S)1T
m ≤ f ≤ (fmax − αS)1T

m, (4)

for some α ≥ 0, where S is the slack variable and 1m ∈
Rm is a vector of ones.

Another method known as the feasible polygon method
has been developed by Gouttefarde et al. [8] to perform
ID on CDPRs with 2 degrees of redundancy (r = m−n =
2). This method exploits the unique properties of the 2
degree of redundancy system in which it is known that
the feasible set of solutions form a convex polygon, re-
ferred to as the feasible polygon. By geometric reason-
ing, the vertices of the feasible polygon can be found in a
clockwise or anti-clockwise order, and the feasible poly-
gon can then be used to obtain the solutions for different
objective functions.

Heuristic-based methods

Optimisation-based methods can lead to challenges in
real-time control, because their worst-case computa-
tional time is often unbounded or very large [11].
This motivates the development of heuristic approaches,
which emphasise computational efficiency at the cost of
solution optimality and/or flexibility.

Pott et al. [10] proposed the closed-form method
(CFM ) ID solver. In this method, the candidate cable
force solution f̃ is given by the closed-form expression

f̃ = fm − L(q)+T
(
w + L(q)T fm

)
, (5)

where the mean feasible force vector fm is defined such
that it has components fmi

= fmin+fmax

2 , and w refers

to the system wrench. If f̃ satisfies the actuation con-
straints (2), then the ID problem is declared feasible and
the solution is returned, otherwise the problem is iden-
tified as infeasible.

When the closed form method identifies a feasible so-
lution, its solution corresponds to the solution of the op-
timisation (3) with objective function g(f) = ‖f − fm‖2.
As a result of its fixed solution form, the CFM possesses

a well-defined and bounded computational time, as only
matrix multiplications, transposes and an inversion is in-
volved in its computation [10]. The fixed solution form,
however, also results in cases where the CFM fails to
identify a feasible solution although one exists.

An improved version of CFM (ICFM ) has hence been
proposed to increase the set of problems where a feasible
solution can be found [11]. This is achieved by iteratively
identifying infeasible cable force terms and then fixing
the terms with the value of the nearest cable force bound
(either the minimum or maximum force). The CFM is
then performed again with the redundancy r reduced by
one. The recursive process continues until a set of fea-
sible solution is calculated or the remaining redundancy
is negative, suggesting no feasible solution. The ICFM
can therefore identify feasible solutions where the CFM
may not without a significant increase in computational
time. However, there are still instances in which ICFM
results in no feasible solution despite solutions existing.

Based on the CFM, Müller et al. [12] developed the
puncture method (PM) as a mean to reduce the solution
cable force norm of a CFM solution. This is achieved by
choosing the solution that lies at the intersection of the
force constraint boundary and the line that connects the
CFM solution with the solution to the unconstrained
minimisation of the quadratic cable force norm. The
puncture method has also been applied to the ICFM
resulting in the improved puncture method (IPM ) [11].
Both methods generate low force distributions that are
more similar to those obtained using the QP methods,
without a significant increase in the CFM computational
time.

2.2 Properties of ID Solvers

The solutions obtained from the algorithms presented
in Section 2.1 possess a number of different properties
based upon their methodologies. Table 1 summarises a
number of the properties for each of the solvers. A more
detailed description of the properties is provided below.

Continuity

An ID solver is considered continuous if there is contin-
uous variation of the solution in response to continuous
changes in the kinematic variable q, q̇ and q̈. Continu-
ity is crucial in controlling CDPRs as sudden and large
change in reference cable forces may result in undesired
actuation dynamics such as oscillations and force error.

As indicated in Table 1, continuity is guaranteed for
the QP, CFM and PM solvers. In contrast, the solvers
that make use of linear programming (including the
minimum-infinity norm and optimally-safe methods) do
not necessarily guarantee solution continuity. This is be-
cause LP is not strictly convex. As a result, the optimal
solution is not necessarily unique and discontinuity can



Inverse Dynamics Solvers

Properties
Linear

Programming
Quadratic

Programming
Minimum

Infinity Norm
Feasible
Polygon

Optimally
Safe

Closed
Form

Puncture
Method

Continuity No Yes No Depends1 No Yes Yes

Force Magnitudes Low Low Low Low Controllable Mid Low

Table 1: Comparison of ID solvers regarding continuity and force magnitudes

occur when there is switching between the different so-
lutions.

Force Magnitudes

Cable forces generated by different solvers have ten-
dencies to be distributed around areas with a certain
force magnitude within the feasible force region. Ta-
ble 1 shows that the LP, QP, minimum-infinity norm,
PM and the feasible polygon methods produce force sets
with lower tensions. These optimisation-based methods
use the force norm as their objective functions, such that
their solution tends towards the lower force bound.

In contrast, the CFM looks to produce force with mag-
nitudes in the vicinity of the mean feasible force while
the optimally safe method does the same in the instance
in which α = 1. This is chosen to avoid cable forces near
the cable force bounds which can result in cable slack
and low robot stiffness [6]. In the case of the optimally
safe method, the use of the tuning parameter α allows
for the resulting force distribution to be tuned towards
a desired magnitude in which α = 0 results in maximum
cable force and the force decreases as α is increased.

Real-Time Capability

In force control of CDPRs, it is crucial to ensure the
operating frequency is high enough, so that the force
controllers can react to changes of system promptly and
control the CDPR accurately. As ID is performed every
control time step, an ID solver is considered as real-time
capable if the solution is available within the time defined
by the frequency requirement. The real-time capability
of the different solvers will be evaluated through the use
of CASPR in Section 3 of this paper.

Scalability

A solver is considered to have a high scalability, if a sig-
nificant change in the number of DoFs, number of cables
and/or number of links does not result in a substantial
increase in computational time [17]. In this paper, be-
sides comparing the absolute computational time used
by each solver, the relative increase/decrease in com-
putational time for a particular solver with respect to
changes in the variables concerned, is also analysed.

1This changes based on whether the 1 or 2 norm is used.

3 Simulation and Comparison Results

The scalability of different ID solvers is analysed in this
section using CASPR. First, Section 3.1 investigates the
effect of adding additional cables (and hence additional
degrees of redundancy) onto a spatial CDPR. Then, Sec-
tion 3.2 considers the effect of adding new links, where
two different joint types are considered in order to inves-
tigate the effect of different Jacobian forms. The set of
test robots developed for these simulations represent a
means of evaluating the effect of different numbers of ca-
bles, DoFs and links on the performance of an ID solver.
As such the test can be used as a means of benchmarking
different solvers in future studies.

For each variation of robot in the test set, ID is per-
formed with each solver along joint trajectories which re-
quire movements in all DoFs. The mean and worst-case
computational time of the 3 different runs are recorded,
and the average time among the 3 runs is used. The
average of the mean computational time over the whole
range of parameters concerned, is considered as the mean
computational time µtime of the solver.

Scalability is quantified by comparing the relative per-
centage change with respect to each increase in the num-
ber of cables and links, in the SCDR and MCDR simula-
tions, respectively. The average of the relative percent-
age changes over all parameter increase, is considered as
the mean relative percentage change µchange.

All simulations were conducted using MATLAB
R2017a (64-bit), on the same hardware with the Intel
Core i5-6500 CPU @ 3.20GHz and 8.00GB of RAM. For
the optimisation solvers, the analysis was performed in
CASPR using the optimisation toolbox solvers of MAT-
LAB in which the dual-simplex and interior-point-convex
algorithms were used for the LP and QP, respectively.
The mean computational time µtime, the minimum and
maximum of mean computational time over the range
of parameters µmin and µmax, and the mean relative
percentage change µchange of the simulations are sum-
marised in Table 2.

3.1 Simulations on SCDRs

This set of tests investigates the scalability of the differ-
ent ID solvers for the 6-DoF IPAnema1 spatial SCDR
with 7 to 12 cables [4]. The joint trajectory used in the



Inverse Dynamics Solvers

Simulations
Linear

Programming
Quadratic

Programming
Minimum

Infinity Norm
Feasible
Polygon

Optimally
Safe

Closed
Form

Puncture
Method

SCDRs

- µtime [ms] 3.429 2.384 10.663 1.071 1.348 0.540 0.569

- µmin [ms] 3.425 2.343 10.600 1.071 1.238 0.532 0.559

- µmax [ms] 3.438 2.433 10.786 1.071 1.531 0.547 0.576

- µchange [%] 0.0699 0.0561 0.0699 N/A 3.3765 0.5523 0.0444

MCDRs (revolute)

- µtime [ms] 3.6247 2.5416 10.7150 0.8392 9.7589 0.6992 0.6338

- µmin [ms] 3.482 2.346 10.053 0.8392 0.776 0.609 0.547

- µmax [ms] 3.781 2.789 11.329 0.8392 11.159 0.814 0.725

- µchange [%] 0.4776 1.6703 0.5865 N/A 138.5537 3.2748 3.2188

MCDRs (spherical)

- µtime [ms] 3.788 2.738 10.707 1.280 8.915 0.660 0.690

- µmin [ms] 3.416 2.324 9.970 1.280 0.880 0.515 0.542

- µmax [ms] 4.325 3.391 11.235 1.280 11.675 0.824 0.845

- µchange [%] 2.6654 4.3194 1.1966 N/A 53.7076 5.3953 5.0633

Table 2: Comparison of ID solvers regarding real-time capability and scalability2

tests is shown in Figure 2, which involves movements of
all DoFs. Figures 3 and 4 show the mean and worst-case
computational time for different solvers, respectively.

It is found from Figures 3 and 4 that heuristic meth-
ods require the least computational time to perform ID,
with a mean time of approximately 0.55 and 0.60 ms for
CFM and PM, respectively. All these heuristic methods
also showed high scalability, where the mean percent-
age changes of computational time with respect to the
increasing number of cables is less than 0.5%.

The optimally safe method displayed a mean compu-
tational time of about 1.35 ms which outperformed ordi-
nary LP and QP solvers, which required approximately
3 ms. However, the method also showed a significantly
higher worst-case computational time than both the LP
and QP. When compared to the LP and QP, which can
be observed to scale well in both the mean and worst-case
computational time, the worst-case computational time
of the optimally safe method showed a sharp increase, in

2Results of ICFM and IPM are shown in the columns of
closed form and puncture method.
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Figure 2: Joint trajectory used in tests on IPAnema1



7 8 9 10 11 12

Number of Cables

0

0.002

0.004

0.006

0.008

0.01

0.012

C
o
m

p
u
ta

ti
o
n
a
l 
ti
m

e
 [
s
]

Mean Computational Time

LP

QP

Min.Inf.Norm

Opt.Safe

CFM

ICFM

PM

IPM

Feasible Polygon

Solvers

Figure 3: Mean computational time of different solvers with

increasing number of cables

7 8 9 10 11 12

Number of Cables

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
o
m

p
u
ta

ti
o
n
a
l 
ti
m

e
 [
s
]

Worst-case Computational Time

LP

QP

Min.Inf.Norm

Opt.Safe

CFM

ICFM

PM

IPM

Feasible Polygon

Solvers

Figure 4: Worst-case computational time of different solvers

with increasing number of cables

particular when the number of cables increases from 11
to 12, displaying an percentage increase of about 78%.

From the tests conducted it can be observed that the
minimum infinity-norm method is not real-time capable,
with a mean computational time of approximately 10 ms,
which is the highest among all solvers. This solver makes
use of an LP in its implementation, however the imple-
mentation time is in general significantly higher. The
high computational time is therefore likely to be caused
by the auxiliary process of transferring the problem into
an LP form rather than the solving of the LP problem.

As the feasible polygon method is only applicable to
CDPRs with 2 degrees of redundancy, it was only tested
in the case with 8 cables. The mean computational time
required by the method is approximately 1.07 ms, which
is observed to be higher than the heuristic methods, but
lower than the optimally safe method, showing real-time
potential when it can be implemented. Scalability of this
method is not considered in the current test set.

3.2 Simulations on MCDRs

To evaluate the scalability of the ID solvers as the num-
ber of links increases, a range of MCDRs with an in-
creasing number of links (and cables) are tested. To
analyse the effect of different joint types on the scaling,
two sets of MCDRs were constructed, one with only rev-
olute joints and the other with only spherical joints. The
range of the number of links is from 1 to 10, with 2 to 20
cables for the revolute joint MCDRs, and 4 to 40 cables
for the spherical joint MCDRs. Figures 5 and 6 show
the trajectories used in the tests for revolute joint and
spherical joint MCDRs, respectively.
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The mean and worst-case computational time used by
different solvers in the revolute and spherical joint MC-
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Figure 6: Joint trajectory used in tests on MCDRs with 1

spherical joint

DRs are shown in figures 7-10. Similar to the SCDR
test set, it can be observed that the heuristic methods,
CFM and PM, showed good performance with approx-
imate mean computational times of 0.6 ms and 0.7 ms
in the revolute and spherical cases, respectively. These
methods showed a relative percentage change of about
6% in the spherical cases, which is larger than that in
the revolute MCDR as well as the SCDR tests. This is
likely due to the higher increase in the number of DoFs
in the spherical MCDR tests than in the revolute cases
and the SCDR tests. Nonetheless, the absolute change in
computational time is insignificant and hence maintains
the high real-time capability of the methods.

In addition to the computational time, it was observed
that from the 6 spherical joint case onwards, the CFM
and PM could not always generate feasible results. This
was not the case for the ICFM and IPM which always
found a solution with only a limited increase in the re-
quired computational time. This result is consistent with
the properties of the ICFM and IPM [11].

In contrast to the heuristic methods, the LP and QP
methods required a greater mean computational time in
general, with about 3.62 and 2.54 ms on revolute joint
MCDRs, and about 3.79 and 2.74 ms in the spherical
cases, respectively. In the revolute cases, the LP and QP
methods showed a mean relative increase of about 0.5%
and 1.7% in computational time, respectively. How-
ever, the increase was more substantial in the case of
the spherical links, with an average of about 2.7% and
4.3%. Since in both test sets the degree of redundancy
increases at the same rate, this increase in computational
time indicates that the number of DoFs of the problem
has a substantial effect.

Both the minimum infinity-norm and the optimally
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Figure 7: Mean computational time of different solvers with

increasing number of revolute joints
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Figure 8: Worst-case computational time of different solvers

with increasing number of revolute joints

safe methods took noticeably longer time as the number
of links increased, with a mean computational time of
around 10 ms and 9 ms, respectively. In both cases an
LP is solved, however, both cases are substantially slower
to implement as the number of links increases. The large
difference is believed to be related to the additional cal-
culations involved in the algorithms, which require much
longer computational time when the problem dimension
scales up.

While both the minimum infinity-norm and the opti-
mally safe methods methods are not real-time capable
for a high number of links, the optimally safe method
performed well in cases of single-link robots, which only
required about 0.78 ms in the revolute case, and 0.88 ms
in the spherical case. The efficient computation method
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Figure 9: Mean computational time of different solvers with

increasing number of spherical joints

proposed by Borgstrom et al. [6] has its most substantial
effect on computational time in the case in which warm
starting can be used to obtain the solution of the next
time instant. As the number of links increased, it was
observed that the warm starting method was infeasible
for a increasing percentage of the trajectories. As a re-
sult, only the single-link robots show real-time potential.

Only the 2-link cases of both the revolute and spherical
joint MCDRs, with 4 and 8 cables respectively, are tested
using the feasible polygon method due to its restriction
in redundancy. Scalability of the method is hence not
considered. Similar to the results from SCDR tests, the
performance of the method lies between heuristic meth-
ods and ordinary LP, QP solvers, with a mean compu-
tational time of approximately 0.84 ms in the revolute
cases, and 1.28 ms in the spherical joint cases, showing
potential for real-time applications.

4 Conclusion

In this paper, properties exhibited by different ID solvers
are compared. Continuity and the magnitudes of the
force set solutions are discussed by analysing the im-
plementations of solvers, while real-time capability and
scalability are investigated through simulations on vari-
ous SCDRs and MCDRs through the use of CASPR. It
was shown that compared to optimisation-based meth-
ods, heuristic methods generally present higher real-time
capability and scalability with respect to increasing num-
ber of links, DoFs and cables. Both the minimum-
infinity norm and optimally-safe methods were found to
not be real-time applicable on multi-link robots, how-
ever, the optimally-safe method outperformed ordinary
LP and QP methods in single-link cases. Simulation re-
sults provide better insights into choosing the right solver
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Figure 10: Worst-case computational time of different solvers

with increasing number of spherical joints

for CDPR researches. Based on the current results, fu-
ture work will look to expand the test set and explore
other properties such as the effect of different poses in
the workspace on the computational time of the solvers.
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