[image:]

[bookmark: _fpp89ekqrc87]
[bookmark: _alpg33yulfge]Linux command line tools
24/10/17

Prepared for the Centre of System Genomics
Created by Bobbie Shaban

Centre for System Genomics

This document outlines the material for the tutorial. This tutorial will also be recorded and uploaded to the Genomic Databases Resource Hub (COGENT) as a webinar for download: https://blogs.unimelb.edu.au/system-genomics/
This tutorial assumes that you have an account. If you don’t have an account please contact your group leader to give you access.
1. Subject
1 Linux command line tools

[bookmark: _ui3bihbw57f9]2. Glossary
chmod: A utility that changes file permissions.

chown: the low-level software that supports a computer's basic functions, such as scheduling tasks and controlling peripherals.

find: the low-level software that supports a computer's basic functions, such as scheduling tasks and controlling peripherals.

rsync: the low-level software that supports a computer's basic functions, such as scheduling tasks and controlling peripherals.

pwd: Displays the name of the current working directory – aka "print working directory."

grep: Grep is a command used for searching one or more files for a given character string or pattern. It can also be used to replace the character string with another one.

cat: Abbreviated from the word "concatenate," which means to link things together, cat is used in Linux to link file contents and output them for viewing or printing.

tar: The tar program provides the ability to create tar archives. Short for “Tape Archiver”

alias: Allows substitution of a small or more familiar name in place of a long string.

vimdiff: Opens two files in vim and compares them

group: A Unix permission classification

[bookmark: _GoBack]
3. 	Tutorial
Group
Unix groups can be used to share files with CS department users. Each user on the CS public machines is associated with a list containing at least one group, and each file or directory on the CS public machines is associated with exactly one group. This is usually referred to as group membership and group ownership, respectively. That is, users are in groups and files are owned by a group.
UNIX Commands for Working with Groups
	Command
	Description
	Example

	groups
	See groups to which you belong with primary group first
	groups

	id
	See current group as part of your id
	id

	newgrp
	Start a shell in a different group
	newgrp project1

	chmod
	Change permissions for directories and files
	chmod g+rwx myfile

	chgrp
	Change group ownership of directories and files
	chgrp project1 myfile

	ls
	List file permissions
	ls -l

Examples.

What groups do you belong to?
	
[bshaban@snowy-sg1 ~]$ groups
SG0009 SG0004 SG0005 sysgen SGN0001

What’s your id?
	
[bshaban@snowy-sg1 ~]$ id
uid=4997(bshaban) gid=3767(SG0009) groups=3767(SG0009),3659(SG0004),3670(SG0005),3698(sysgen),3714(SGN0001)

My current group is (SG0009).

Main group is set in kaarage when you sign up. You have a kaarage account you can log into and change your main group if you have been added to more than one group. https://my.vlsci.org.au/karaage/profile/login/?next=/karaage/projects/

Chmod
In general, chmod commands take the form:
chmod options permissions file name
permissions defines the permissions for the owner of the file (the "user"), members of the group who owns the file (the "group"), and anyone else ("others"). There are two ways to represent these permissions: with symbols (alphanumeric characters), or with octal numbers (the digits 0 through 7).
Let's say you are the owner of a file named myfile, and you want to set its permissions so that:
1. the user can read, write, ande xecute it;
2. members of your group can read ande xecute it; and
3. others may only read it.
This command will do the trick:
chmod u=rwx,g=rx,o=r myfile
This example uses symbolic permissions notation. The letters u, g, and o stand for "user", "group", and "other".

The equals sign ("=") means "set the permissions exactly like this," and the letters "r", "w", and "x" stand for "read", "write", and "execute", respectively. The commas separate the different classes of permissions, and there are no spaces in between them.
Here is the equivalent command using octal permissions notation:
chmod 754 myfile
Here the digits 7, 5, and 4 each individually represent the permissions for the user, group, and others, in that order. Each digit is a combination of the numbers 4, 2, 1, and 0:
· 4 stands for "read",
· 2 stands for "write",
· 1 stands for "execute", and
· 0 stands for "no permission."
So 7 is the combination of permissions 4+2+1 (read, write, and execute), 5 is 4+0+1(read, no write, and execute), and 4 is 4+0+0 (read, no write, and no

Eg. Change permissions in directory recursively
chmod -R 755 directory-name/
Chown

What’s the difference between chown and chmod?
	

	In simple term chown is used to change the ownership of a file while chmod is for changing the file mode bits.
· chown defines who owns the file.
· chmod defines who can do what.

Bobbie Shaban: bshaban@unimelb.edu.au

[image: enter image description here]

Create a file

touch rainbow
Let's have a look at the file's permissions
$ ls -l rainbow
-rw-r--r-- 1 bshaban SG0009 0 Oct 24 09:44 rainbow
The first part of the information is the file type (- at the beginning means it's a regular file) and the permission bits

[image: https://i.stack.imgur.com/9MxAZ.jpg]
In most cases chown should be enough.

find

To use the find command, at the Unix prompt, enter:
 find . -name "pattern" -print
Replace "pattern" with a filename or matching expression, such as "*.txt". (Leave the double quotes in.)
 [bshaban@snowy-sg1 ~]$ find -name "rainbow" -print
./rainbow
./tute4/rainbow

You have several options for matching criteria:
	-atime n
	File was accessed n days ago

	-mtime n
	File was modified n days ago

	-size n
	File is n blocks big (a block is 512 bytes)

	-type c
	Specifies file type: f=plain text, d=directory

	-fstype typ
	Specifies file system type: 4.2 or nfs

	-name nam
	The filename is nam

	-user usr
	The file's owner is usr

	-group grp
	The file's group owner is grp

	-perm p
	The file's access mode is p (where p is an integer)

You can use + (plus) and - (minus) modifiers with the atime, mtime, and size criteria to increase their usefulness, for example:
	-mtime +7
	Matches files modified more than seven days ago

	-atime -2
	Matches files accessed less than two days ago

	-size +100
	Matches files larger than 100 blocks (50KB)

By default, multiple options are joined by "and". You may specify "or" with the -o flag and the use of grouped parentheses. To match all files modified more than 7 days ago and accessed more than 30 days ago, use:
 \(-mtime +7 -atime +30 \)
To match all files modified more than 7 days ago or accessed more than 30 days ago, use:
 \(-mtime +7 -o -atime +30 \)
You may specify "not" with an exclamation point. To match all files ending in .txt except the file notme.txt, use:
 \! -name notme.txt -name *.txt
You can specify the following actions for the list of files that the find command locates:
	-print
	Display pathnames of matching files.

	-exec cmd
	Execute command cmd on a file.

	-ok cmd
	Prompt before executing the command cmd on a file.

	-mount
	(System V) Restrict to file system of starting directory.

	-xdev
	(BSD) Restrict to file system of starting directory.

	-prune
	(BSD) Don't descend into subdirectories.

Executed commands must end with \; (a backslash and semi-colon) and may use {} (curly braces) as a placeholder for each file that the find command locates. For example, for a long listing of each file found, use:
 -exec ls -l {} \;
Matching criteria and actions may appear in any order and are evaluated from left to right.
Full examples
· To find and report all text files starting at the current directory, enter:
 find . -name *.txt -print
· To report all files starting in the directories /mydir1 and /mydir2 larger than 2,000 blocks (about 1,000KB) and that have not been accessed in over 30 days, enter:
 find /mydir1 /mydir2 -size +2000 -atime +30 -print
· To remove (with prompting) all files starting in the /mydir directory that have not been accessed in over 100 days, enter:
 find /mydir -atime +100 -ok rm {} \;
· To show a long listing starting in /mydir of files not modified in over 20 days or not accessed in over 40 days, enter:
 find /mydir \(-mtime +20 -o -atime +40\) -exec ls -l {} \;
· To list and remove all regular files named core starting in the directory /prog that are larger than 500KB, enter:
 find /prog -type f -size +1000 -print -name core -exec rm {} \;
Rsync

Rsync (Remote Sync) is a most commonly used command for copying and synchronizing files and directories remotely as well as locally in Linux/Unix systems. With the help of rsync command you can copy and synchronize your data remotely and locally across directories, across disks and networks, perform data backups and mirroring between two Linux machines.

Some advantages and features of Rsync command
· It efficiently copies and sync files to or from a remote system.
· Supports copying links, devices, owners, groups and permissions.
· It’s faster than scp (Secure Copy) because rsync uses remote-update protocol which allows to transfer just the differences between two sets of files. First time, it copies the whole content of a file or a directory from source to destination but from next time, it copies only the changed blocks and bytes to the destination.
· Rsync consumes less bandwidth as it uses compression and decompression method while sending and receiving data both ends.
·
Basic syntax of rsync command
rsync options source destination
Some common options used with rsync commands
· -v : verbose
· -r : copies data recursively (but don’t preserve timestamps and permission while transferring data
· -a : archive mode, archive mode allows copying files recursively and it also preserves symbolic links, file permissions, user & group ownerships and timestamps
· -z : compress file data
· -h : human-readable, output numbers in a human-readable format

Copy/Sync a File on a Local Computer
This following command will sync a single file on a local machine from one location to another location.
[[bshaban@snowy-sg1 tute4]$ rsync -zvh generic.tar backup/
created directory backup
generic.tar
sent 57.09M bytes received 31 bytes 4.96M bytes/sec
total size is 370.89M speedup is 6.50
[bshaban@snowy-sg1 tute4]$In above example, you can see that if the destination is not already exists rsync will create a directory automatically for destination.
Copy/Sync a Directory on Local Computer
The following command will transfer or sync all the files of from one directory to a different directory in the same machine.
[bshaban@snowy-sg1 tute4]$ rsync -avzh * new_backup
sending incremental file list
created directory new_backup
generic.tar
generic.txt
rainbow
text.txt
backup/
backup/generic.tar
transfer
sent 171.26M bytes received 115 bytes 5.44M bytes/sec
total size is 1.11G speedup is 6.50
2. Copy/Sync Files and Directory to or From a Server
Copy a Directory from Local Server to a Remote Server
This command will sync a directory from a local machine to a remote machine. (Is possible, I won’t go through)
[root@tecmint]$ rsync -avz rpmpkgs/ root@192.168.0.101:/home/
root@192.168.0.101's password:
sending incremental file list
./
httpd-2.2.3-82.el5.centos.i386.rpm
mod_ssl-2.2.3-82.el5.centos.i386.rpm
nagios-3.5.0.tar.gz
nagios-plugins-1.4.16.tar.gz
sent 4993369 bytes received 91 bytes 399476.80 bytes/sec
total size is 4991313 speedup is 1.00
Copy/Sync a Remote Directory to a Local Machine
This command will help you sync a remote directory to a local directory. Here in this example, a directory /home/tarunika/rpmpkgs which is on a remote server is being copied in your local computer in /tmp/myrpms.
[root@tecmint]# rsync -avzh root@192.168.0.100:/home/tarunika/rpmpkgs /tmp/myrpms
root@192.168.0.100's password:
receiving incremental file list
created directory /tmp/myrpms
rpmpkgs/
rpmpkgs/httpd-2.2.3-82.el5.centos.i386.rpm
rpmpkgs/mod_ssl-2.2.3-82.el5.centos.i386.rpm
rpmpkgs/nagios-3.5.0.tar.gz
rpmpkgs/nagios-plugins-1.4.16.tar.gz
sent 91 bytes received 4.99M bytes 322.16K bytes/sec
total size is 4.99M speedup is 1.00
3. Rsync Over SSH
With rsync, we can use SSH (Secure Shell) for data transfer, using SSH protocol while transferring our data you can be ensured that your data is being transferred in a secured connection with encryption so that nobody can read your data while it is being transferred over the wire on the internet.
Also when we use rsync we need to provide the user/root password to accomplish that particular task, so using SSH option will send your logins in an encrypted manner so that your password will be safe.
Copy a File from a Remote Server to a Local Server with SSH
To specify a protocol with rsync you need to give “-e” option with protocol name you want to use. Here in this example, We will be using “ssh” with “-e” option and perform data transfer.
[root@tecmint]# rsync -avzhe ssh root@192.168.0.100:/root/install.log /tmp/
root@192.168.0.100's password:
receiving incremental file list
install.log
sent 30 bytes received 8.12K bytes 1.48K bytes/sec
total size is 30.74K speedup is 3.77
Copy a File from a Local Server to a Remote Server with SSH
[root@tecmint]# rsync -avzhe ssh backup.tar root@192.168.0.100:/backups/
root@192.168.0.100's password:
sending incremental file list
backup.tar
sent 14.71M bytes received 31 bytes 1.28M bytes/sec
total size is 16.18M speedup is 1.10
Suggested Read: Use Rsync to Sync New or Changed/Modified Files in Linux
4. Show Progress While Transferring Data with rsync
To show the progress while transferring the data from one machine to a different machine, we can use ‘–progress’ option for it. It displays the files and the time remaining to complete the transfer.
[root@tecmint]# rsync -avzhe ssh --progress /home/rpmpkgs root@192.168.0.100:/root/rpmpkgs
root@192.168.0.100's password:
sending incremental file list
created directory /root/rpmpkgs
rpmpkgs/
rpmpkgs/httpd-2.2.3-82.el5.centos.i386.rpm
1.02M 100% 2.72MB/s 0:00:00 (xfer#1, to-check=3/5)
rpmpkgs/mod_ssl-2.2.3-82.el5.centos.i386.rpm
99.04K 100% 241.19kB/s 0:00:00 (xfer#2, to-check=2/5)
rpmpkgs/nagios-3.5.0.tar.gz
1.79M 100% 1.56MB/s 0:00:01 (xfer#3, to-check=1/5)
rpmpkgs/nagios-plugins-1.4.16.tar.gz
2.09M 100% 1.47MB/s 0:00:01 (xfer#4, to-check=0/5)
sent 4.99M bytes received 92 bytes 475.56K bytes/sec
total size is 4.99M speedup is 1.00
5. Use of –include and –exclude Options
These two options allows us to include and exclude files by specifying parameters with these option helps us to specify those files or directories which you want to include in your sync and exclude files and folders with you don’t want to be transferred.
Here in this example, rsync command will include those files and directory only which starts with ‘R’ and exclude all other files and directory.
[root@tecmint]# rsync -avze ssh --include 'R*' --exclude '*' root@192.168.0.101:/var/lib/rpm/ /root/rpm
root@192.168.0.101's password:
receiving incremental file list
created directory /root/rpm
./
Requirename
Requireversion
sent 67 bytes received 167289 bytes 7438.04 bytes/sec
total size is 434176 speedup is 2.59
6. Use of –delete Option
If a file or directory not exist at the source, but already exists at the destination, you might want to delete that existing file/directory at the target while syncing .
We can use ‘–delete‘ option to delete files that are not there in source directory.
Source and target are in sync. Now creating new file test.txt at the target.
[root@tecmint]# touch test.txt
[root@tecmint]# rsync -avz --delete root@192.168.0.100:/var/lib/rpm/ .
Password:
receiving file list ... done
deleting test.txt
./
sent 26 bytes received 390 bytes 48.94 bytes/sec
total size is 45305958 speedup is 108908.55
Target has the new file called test.txt, when synchronize with the source with ‘–delete‘ option, it removed the file test.txt.
7. Set the Max Size of Files to be Transferred
You can specify the Max file size to be transferred or sync. You can do it with “–max-size” option. Here in this example, Max file size is 200k, so this command will transfer only those files which are equal or smaller than 200k.
[root@tecmint]# rsync -avzhe ssh --max-size='200k' /var/lib/rpm/ root@192.168.0.100:/root/tmprpm
root@192.168.0.100's password:
sending incremental file list
created directory /root/tmprpm
./
Conflictname
Group
Installtid
Name
Provideversion
Pubkeys
Requireversion
Sha1header
Sigmd5
Triggername
__db.001
sent 189.79K bytes received 224 bytes 13.10K bytes/sec
total size is 38.08M speedup is 200.43
8. Automatically Delete source Files after successful Transfer
Now, suppose you have a main web server and a data backup server, you created a daily backup and synced it with your backup server, now you don’t want to keep that local copy of backup in your web server.
So, will you wait for transfer to complete and then delete those local backup file manually? Of Course NO. This automatic deletion can be done using ‘–remove-source-files‘ option.
[root@tecmint]# rsync --remove-source-files -zvh backup.tar /tmp/backups/
backup.tar
sent 14.71M bytes received 31 bytes 4.20M bytes/sec
total size is 16.18M speedup is 1.10
[root@tecmint]# ll backup.tar
ls: backup.tar: No such file or directory
9. Set Bandwidth Limit and Transfer File
You can set the bandwidth limit while transferring data from one machine to another machine with the the help of ‘–bwlimit‘ option. This options helps us to limit I/O bandwidth.
[root@tecmint]# rsync --bwlimit=100 -avzhe ssh /var/lib/rpm/ root@192.168.0.100:/root/tmprpm/
root@192.168.0.100's password:
sending incremental file list
sent 324 bytes received 12 bytes 61.09 bytes/sec
total size is 38.08M speedup is 113347.05
Also, by default rsync syncs changed blocks and bytes only, if you want explicitly want to sync whole file then you use ‘-W‘ option with it.
[root@tecmint]# rsync -zvhW backup.tar /tmp/backups/backup.tar
backup.tar
sent 14.71M bytes received 31 bytes 3.27M bytes/sec
total size is 16.18M speedup is 1.10
PWD/PUSHD/POPD

In Unix-like and some other operating systems, the pwd command (print working directory) writes the full pathname of the current working directory to the standard output. The command is a shell builtin in most Unix shells such as Bourne shell, ash, bash, ksh, and zsh.

[bshaban@snowy-sg1 tute4]$ echo $PWD
/vlsci/SG0009/bshaban/tute4

PUSHD
[bshaban@snowy-sg1 tute4]$ pushd $PWD
~/tute4 ~/tute4
POPD
[bshaban@snowy-sg1 SG0009]$ popd
~/tute4
grep
Basic example
Grep “literal string” example
[bshaban@snowy-sg1 bunch_of_text_files]$ grep "We have been unable to ascertain the date when young Lamarck" *
20556.txt.utf-8:[8] We have been unable to ascertain the date when young Lamarck entered
20556.txt.Less specific example
bshaban@snowy-sg1 bunch_of_text_files]$ grep "this" * | less
????
20556.txt.utf

Case insensitive search
bshaban@snowy-sg1 bunch_of_text_files]$ grep -I “string” FILE
Regular Expressions
bshaban@snowy-sg1 bunch_of_text_files]$ grep REGEX filename
E.g. [bshaban@snowy-sg1 bunch_of_text_files]$ grep -i "^Time" *
Checking for full words, not for sub-strings using grep -w
If you want to search for a word, and to avoid it to match the substrings use -w option. Just doing out a normal search will show out all the lines.
 [bshaban@snowy-sg1 bunch_of_text_files]$ grep -i "is" * | less
Display lines after match
[bshaban@snowy-sg1 bunch_of_text_files]$ grep -A 5 "International" 20556.txt.utf-8
By Karl Semper. The International Scientific Series. New York, 1881.
[240] _Organic Evolution as the Result of the Inheritance of Acquired
Characters, according to the Laws of Organic Growth._ Translated by
J. T. Cunningham, 1890.
--
International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.
Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other
To do the same to show a number of lines before the match use the B option

Invert Match
To perform an invert match i.e. show lines which don’t contain a match use the -v option.
e.g. will show all lines that don’t have the word “is” contained within it.
[bshaban@snowy-sg1 bunch_of_text_files]$ grep -v "is" * | less
Count the number of lines that match a pattern. (-c)
[bshaban@snowy-sg1 bunch_of_text_files]$ grep -c "International" *
20556.txt.utf-8:2
33660.txt.utf-8:1
45888-0.txt:2
50598.txt.utf-8:1
676.txt.utf-8:0

Show number of line when performing a grep match

[bshaban@snowy-sg1 bunch_of_text_files]$ grep -n "International" 20556.txt.utf-8
13794:By Karl Semper. The International Scientific Series. New York, 1881.
16074:International donations are gratefully accepted, but we cannot make

tar
[bshaban@snowy-sg1 bunch_of_text_files]$ tar -cvf backup.tar 20556.txt.utf-8
20556.txt.utf-8
1. c – Creates a new .tar archive file.
2. v – Verbosely show the .tar file progress.
3. f – File name type of the archive file.

Untar a file
[bshaban@snowy-sg1 bunch_of_text_files]$ tar -xvf backup.tar
20556.txt.utf-8
List contents
[bshaban@snowy-sg1 bunch_of_text_files]$ tar -tvf backup.tar
-rw-r--r-- bshaban/SG0009 849583 2017-10-24 10:43 20556.txt.utf-8
Tar a directory
[bshaban@snowy-sg1 unzip]$ tar -xvf directory.tar
./bunch_of_text_files/
./bunch_of_text_files/20556.txt.utf-8
./bunch_of_text_files/backup.tar
./bunch_of_text_files/50598.txt.utf-8
./bunch_of_text_files/676.txt.utf-8
./bunch_of_text_files/33660.txt.utf-8
./bunch_of_text_files/45888-0.txt
./bunch_of_text_files/z

vimdiff: Opens two files in vim and compares them
 [bshaban@snowy-sg1 vimdiff]$ vimdiff vd1.txt vd2.txt
2 files to edit

image2.jpeg

image3.jpeg
Owner Group Other
Type pemissions permissions permissions
r 1" 1" 1

—I'wWXr-xXxr-x

image1.png
Centre for Systems
Genomics

