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Abstract

A combination of the refined finite lattice method and transfer matrices allows
a radical increase in the computer enumeration of polyominoes on the hexagonal
lattice, (equivalently, site clusters on the triangular lattice), p, with n hexagons.
We obtain p,, for n < 35. We prove that p, = 7*T°(")_ obtain the bounds 4.8049 <
7 < 5.9047, and estimate that 7 = 5.1831478(17). Finally, we provide compelling
numerical evidence that the generating function ) p,2z" =~ A(z)log(l — 72), for
z — (1/7)~ with A(z) holomorphic in a cut plane, estimate A(1/7) and predict the
sub-leading asymptotic behaviour, identifying a non-analytic correction-to-scaling
term with exponent A = 3/2. On the basis of universality and previous numerical
work we argue that the mean-square radius of gyration <R§)n of polyominoes of size
n grows as n?”, with v = 0.64115(5).
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1 Introduction

While there is an extensive literature on lattice animals, otherwise known
as polyominoes, on the square lattice [7], the available data on triangular or
hexagonal lattices is much sparser. On the hexagonal lattice one can define a
polyomino as a connected set of lattice cells. A self-avoiding polygon on the
hexagonal lattice can be defined as the boundary of a simply connected (that
is, hole free) polyomino on the hexagonal lattice. Alternatively a self-avoiding
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polygon can be defined as a self-avoiding walk that ends at a site adjacent to
its starting point, with the addition of a single bond joining the end-points.
For a more general discussion of polyominoes see [7]. The sparseness of the lit-
erature on hexagonal polyominoes is perhaps surprising as hexagonal lattice
polyominoes are of considerable interest in computational chemistry, where
they model a generalised coronoid system. Coronoid systems are defined as
benzenoid systems with holes, where a benzenoid or planar polyhez is a special
type of hydrocarbon molecule. Its hexagonal system is obtained by deleting
all carbon-hydrogen bonds, leaving clusters of hexagons joined at an edge (a
carbon-carbon bond.) They thus appear as connected geometric figures, be-
ing clusters of identical hexagons in the plane, joined at an edge. All internal
regions of the cluster are filled with hexagons, that is to say, there are no
internal holes. Clearly these are just hexagonal self-avoiding polygons enu-
merated by area. These have recently been counted up to area 35 for both
fized and free embeddings [25]. If one or more internal carbon-carbon bonds
is missing, the polygon has an internal hole. Clearly such a hole must be of
area at least two, as one cannot visually distinguish between the presence or
absence of a single cell. However, any internal cluster of cells of area greater
than one involves missing bonds, and so is visually distinct from a polygon.
In the chemical literature therefore, coronoid systems differ from polyominoes
by having internal holes of area at least two. Another feature of the definition
of coronoid systems, which seems to us artificial, is that coronoid systems can
have only a single hole (but of arbitrary size), whereas polyominoes can have
any number of disjoint internal holes. There appears no a priori reason why
a coronoid system with multiple holes could not be synthesised.

In this paper we will solely be discussing the number of fixed polyominoes
counted by area. These are of course fully equivalent to the number of con-
nected site clusters on the triangular lattice. A distinction is often made be-
tween fized embeddings, and free embeddings. In the former, polyominoes are
considered distinct up to a translation, that is to say, fixed polyominoes means
“an equivalence class of polyominoes under translation” while free polyomi-
noes are considered equivalent under translations, rotations and reflections.
More precisely, free polyominoes refers to “an equivalence class of polyomi-
noes under translation, rotation and reflection”. In Figure 1 a simple example
is shown of a hexagonal cluster which has a count of 1 as a free polyomino,
and a count of 12 as a fixed polyomino. In the chemistry literature the number
of free embeddings [8] of structures has been universally considered. In [25]
a proof is given that the number of free embeddings of polygons is, asymp-
totically, given by 12 times the number of fixed embeddings. The corrections
to this asymptotic result are exponentially small, that is to say, are of order
exp(—cn) where n is the area of the polyomino and c¢ is a positive constant.
This proof holds mutatis mutandis for hexagonal polyominoes.

The monograph by Gutman and Cyvin [8] provides a comprehensive review



of all aspects of hexagonal polygon and polyomino enumeration prior to 1990,
with a more up-to-date review in ref. [2]. Progress has been slow, but incre-
mental, as all previous calculations have been based on direct counting of
polyominoes. As the number of these grow as 5.18" for polyominoes of size n,
it is clear that, to obtain one further term, one needs more than 5 times the
computer power than one previously had—or 5 times as many computers if
one is performing calculations in parallel. Up to 1972, the number of polyomi-
noes to n = 12 was known [16]. Twenty years later, this had been improved to
n = 22 [19]. Thus one extra term each two years has been found on average,
reflecting a steady 2.6-fold increase per annum achieved by a combination of
computer speed and resources.

In this paper, we present an improved algorithm that enables us to obtain
pn for n < 35. This represents an improvement of 5.1813 ~ 2 x 10° over
pre-existing calculations. (Or a jump of about twenty-two years in terms of
the traditional algorithms). The algorithm is in fact exponentially faster than
direct counting, with both time and memory growing approximately as 1.65".
Its drawbacks are that it is much more memory intensive than direct counting,
for which memory requirements are negligible, as well as being much more
difficult to implement.

We first prove some results about p,. We then describe the algorithm, and
give the number of fixed polyominoes up to size 35. We then apply a range of
numerical techniques to the data, and thus provide compelling evidence that
the generating function

P(z) =Y pu2" = A(z)log(l — 72), as z — (1/7) ", (1)

n>1
where A(z) is holomorphic in a plane cut from 1/7 to oo and, further, that
Pn T /nfay + az/n + az /0 + ag/n* + as /0’ + O(1/n?)).

The symbol ~ indicates that this is the singular part of the quantity appearing
on the left hand side, but that an equality cannot be used as the right-hand
side may have neglected, for example, additive analytic functions that do not
contribute to the singular behaviour. We then establish rigorous upper and
lower bounds on 7, and give a precise (but non-rigorous) estimate of 7.

Another interesting property of polyominoes is their average size. Many pos-
sible measures exist, such as radius of gyration, mean-span, mean distance of
a site from another site, and most of these are equivalent in the sense that
their asymptotic behaviour is characterised by the same exponential growth.
A common measure is the mean-square radius of gyration, (Rg)n, which is just
the second moment about the centre of mass, of polyominoes of size n. Solely
by reference to earlier work on polygons [12], and an appeal to universality, we



provide compelling numerical arguments (though not a proof) that this grows
as n?, with v = 0.64115(5).

2 Rigorous results

We first prove (or outline proofs) of some rigorous results on the number of
polyominoes. Let p, denote the number of fized configurations of n hexagons.
Then,

Theorem 1 There is a growth constant 7 with 1 < 7 < 00, for fixed hexago-
nal polyominoes, such that

lim p}/™ = 7 = sup p/™. (2)

n
n—00 n>1

This follows from the observation that if one takes any two (fixed) polyomi-
noes, one of size n; and one of size no, one can identify the rightmost, topmost
cell of the first polyomino, and join it to the leftmost, bottommost cell of the
second (so that they share an edge of a hexagon), as shown in Figure 2. In
this way one produces a unique polyomino of size n; + n,. However, not all
polyominoes of size n; + ny can be produced in this way. Thus we arrive at
the supermultiplicative inequality,

PniDny S Pni+no fOI' ni, N2 Z 1. (3)

Taking the logarithm and multiplying by —1 yields a sub-additive inequality.
The final requirement to complete the proof is to show that the sequence
{p}/ "} is bounded above. A crude bound, pi/ n < 24 follows mutatis mutandis
from the corresponding argument for square lattice bond animals given in
ref. [28]. We give more details of a much tighter bound below.

A stronger result has recently been proved by Madras [18], who established
that

Theorem 2 If p, denotes the number of polyominoes of area n, then

dim pr/ppy =T (4)

The proof relies on a pattern theorem for lattice animals. It requires three
conditions to be satisfied. Two of these, translational invariance and a property
on weights are trivially satisfied, while the third, which requires certain pattern
translates to hold, was also proved by Madras [18]. Note that the proof does not
hold for polygons enumerated by area. For polygons enumerated by perimeter,



a similar result has been proved by Kesten [14]. Kesten considered, among
other problems, the number uy, of fixed polygons of perimeter 2n. (Recall
that ug,41 = 0). For this problem, Kesten proved that

: 2
Hm uzp/uzn—2 = 7, (5)

where p is the relevant growth constant when considering enumeration by
perimeter. In fact it is generally accepted that p? = 2 4+ /2, [20], though this
has not been proved.

It is widely believed, for polyominoes as well as for a very large class of re-
lated lattice objects, including lattice trees, self-avoiding walks, percolation
clusters, and self-avoiding polyominoes, to name but a few, that the asymp-
totic behaviour is in fact

P ~ AT™n? as n — oo.

Note that Theorem 1 implies that p, ~ A"t so this conjecture says
something about the sub-dominant asymptotic behaviour, which is contained
in the term n?. The conjectured logarithmic singularity of the generating func-
tion (1), which we justify below implies that # = —1. For most two-dimensional
problems the existence of the sub-dominant term n? has not been proved, but
for many problems, especially those that are conformally invariant [10], not
only is it widely (indeed, universally) believed to be true, but it is equally
widely held that the exact value of # is known. For polyominoes, it is believed
that # = —1. Furthermore, #, unlike 7 displays universality. That is to say, 7
changes as one changes from the hexagonal lattice to say, the square or tri-
angular lattice, but 6 is expected to remain constant. (For three-dimensional
polyominoes, @ is believed to take the value —3/2).

An additional universal property of such systems is the exponent character-
ising the linear size or an equivalent metric property, such as the mean span.
This is just the average width (or, equivalently, height) of objects of size n,
(polyominoes, in this case), averaged over all the objects of size n. We expect
the mean span (MS), to be asymptotically proportional to n”, where v is
another universal critical exponent. An equivalent metric is the mean-square
radius of gyration, discussed above, which is expected to grow like n?”. In
ref. [17] Madras proves an exponent inequality relating v and 0, viz.

Theorem 3 Provided that the critical exponents v and 0 exist, the inequality
v<-—6
holds.

(Note that this result is rather weak in two dimensions, where § = —1). We
outline the proof below. Of course it depends on the existence of the exponents



f and v. In this paper we do not estimate v, but on the grounds of universality
we expect it to be the same as for square-lattice polyominoes, which we have
previously estimated [12] to be v = 0.64115(5). The theorem is thus not “tight”
as substituting the numerical estimates of the exponents we have 0.64115 < 1.

Before giving the proof, we remark that for polyominoes there is a compelling
argument [21] that 6 for a d-dimensional system, is given by the Yang-Lee
edge singularity exponent in d — 2 dimensions. As this exponent is known in
dimensions 0 and 1 it follows that # = —1, —3/2 for two- and three-dimensional
polyominoes respectively. As our analysis below shows, this prediction is well
borne out by the numerical data. The strongest rigorous result to date is due
to Madras [17] who has proved

Theorem 4 Assuming that the exponent 0 exists for d-dimensional animals
it satisfies 0 < (1 —d)/d.

For simplicity, we give the proof for the two-dimensional case, for which the
theorem gives § < —1/2, which is consistent with the believed exact value
6 = —1. The proof requires the following lemma:

Lemma 1 Let A be a positive number and let by, by, - - - , be a positive sequence
such that lim,,_, b}/” = A. Also assume that there are numbers C > 0 and
s > 0, and wnteger k > 0, such that

bontk > Cnsbf1 for every n > 1.

Then
1

+k
n S C25ns A"

b

for every n > 1.

This lemma is given and proved in ref. [17]. First, observe that any polyomino
of n-cells has, by definition, area n, if we take a cell as the unit of area. As
a space-filling object, it follows that one linear dimension must be at least
\/n. Orient two polyominoes, labelled | (for left) and r (for right), both of
size n, so that their vertical dimension is at least \/n. (This can be done by a
rotation, if necessary.) We will consider joining two polyominoes together to
form a polyomino system of size 2n + 1, in a manner similar to that discussed
and illustrated above in the proof of Theorem 1. Move r to the right of [, and
translate it vertically so that a horizontal line exists which intersects [ and
r. There are at least 24/n choices for this translation. Now translate r to the
left until it is just one cell to the right of I. Insert this cell (shown shaded
in Figure 3), which joins [ and r. This produces a 2n + 1 cell system, which
may be produced more than once (because of the permitted rotations). Each
polyomino may be rotated through 27/3 radians, allowing up to 3 possible
rotations. Thus up to 32 = 9 possible realisations of this polyomino can occur.
However not all such 2n + 1 cell systems can be produced in this way. Thus



we obtain 9pa,y1 > 24/np?, where the factor 24/n arises from the number of
possible overlaps, and the factor of 9 arises from the rotational possibilities
just discussed.

Then from the above lemma and Theorem 1, it follows that

Thus # < —1/2 as claimed.

The proof that v < —6 follows from certain properties of the projection of the
polyomino onto one of the lattice axes. Roughly speaking, the z-projection
is the width of the polyomino (being its projection onto the z-axis), and the
y-projection is its height. There exists a positive constant K such that for each
polyomino of area n

1
E(x—projection + y-projection) > K X mean span.

Then from the above concatenation argument leading to the proof of the bound
on @, we arrive at

Pan > 2Kp (M S)y,.

Next, from the scaling assumption (M S), ~ Bn” as n — oo, (where B is a
constant), we obtain

Pon > 2K Bp2n”.
From the same lemma used above, we then obtain p, < ﬁ. The assump-
tion p, ~ const.7"n? when substituted into the preceding expression, yields
the required inequality.

3 Finite Lattice Method algorithm

The method used to enumerate polyominoes on the hexagonal lattice is a
generalisation of the method devised by Enting [4] in his pioneering work on
the enumeration of square lattice polygons by perimeter and the subsequent
extension of this approach to hexagonal lattice polygons [6]. We also included
the significant enhancements developed by Jensen and employed in previous
work [11] on square lattice polygon perimeter enumeration. While all of these
papers are concerned with enumeration by perimeter, the general method,
described in detail in these papers, is the same when enumerating by area and
for this reason we shall be brief and only give essential information.

As pointed out by Enting [5], there are three conditions that have to be fulfilled
to make the FLM a successful technique for a specific problem:



e The coeflicients of the generating function must be expressible in terms of
the number of embeddings of a well-defined class of connected graphs.

e Weights for combining contributions from finite lattices have to be known
or calculated.

e Efficient ways of constructing the finite lattice sums must exist. In practice,
this means transfer matrix (TM) techniques.

In the following we shall outline how these conditions are realised in the cal-
culation for (fixed) polyominoes on the hexagonal lattice.

We embed the hexagonal lattice in the square lattice as the brick-work lattice,
as shown in Figure 4. Note that a brick consists of two cells of the square lattice
but counts as being of area one when we enumerate polyominoes. There are
two types of vertices on the hexagonal lattice, type 0 and 1, as shown in
Figure 5 with corresponding vertices on the brick-work lattice.

In the case of polyominoes, the series expansion is the series of polyominoes
enumerated by area on the hexagonal lattice itself. Since polyominoes are
connected, this is, trivially, the required connected graph expansion. This ad-
dresses the first condition of the FLM.

To address the second condition above, consider the rectangles Z;, , with
length m, and height n where the bottom left-hand corner is a vertex of type
i € {0,1}. Let pl, ,(2) = Tgph.x?" be the area generating function for
polyominoes that fit inside the rectangle Z}, , and touch all its sides. Z},,, is
called the bounding rectangle of such a polyomino. The bounding rectangle
is unique. As a result P(z), the generating function for fixed polyominoes,
can be expressed as a sum over the generating functions of polyominoes on
the finite lattices, P(2) = Y nik Pinns?” = ZmniPinn(2)- The pi, . (2) are
polynomials. The minimal degree of pf, ,(z) increases with m and n. It is at
least n 4+ max{0, [(m —n —1)/2]}. If one wants to calculate P(z) up to order
Nmax, only the pin,n(z) which have a minimal degree of Ny, or less have to
be calculated. Hence the generating function can be written as

P(z) = > Prmn(2) + O (2" t). (6)

1SnSNmax
1<m<2Nmax—n+1
1€{0,1}

For this we have to consider the finite lattices an’n with 1 < n < Nuyax,

1 <m < 2Npax —n+ 1 and i € {0,1}. Hence the weights are one for these
lattices and zero otherwise.

To address the third point in Enting’s list of conditions, we briefly discuss the
TM method which we used to calculate the generating functions on the finite
lattices. Enting [4] enumerated polygons on the square lattice by perimeter
and outlined the principles of the TM method for enumerating polygons on



a lattice in general. Enting and Guttmann [6] used the FLM/TM technique
to enumerate polygons on the hexagonal lattice by perimeter. To apply the
TM method we define the polyominoes by their perimeter, which includes the
holes. That is to say, the total perimeter is the sum of the internal perimeter
and the external perimeter. Note that while the perimeter is an essential part
of the TM algorithm which we used, we still enumerate the polyominoes by
area.

Polyominoes on the square lattice, unlike polygons, can have configurations
with vertices of degree four. However this is impossible on a hexagonal lattice
(which has coordination number three), and so the only topological feature
that distinguishes a hexagonal lattice polyomino from a polygon is that in the
former case isolated (disjoint) internal polygons are permitted. (On the square
lattice one can define a model, called polygonal polyominoes that interpolates
between polygons and polyominoes, by only allowing isolated polygons, and
hence excluding polyomino configurations which include vertices of degree
four. This model has been studied in [13].)

Terms in the the polyomino generating function P(z) = > p,z" can be calcu-
lated using TM techniques to count the number of polyominoes in rectangles
of height m and length n. The TM technique involves drawing a boundary
line, which passes through the mid-points of the edges perpendicular to it,
through the rectangle intersecting a set of m + 1 edges. Each edge is either
empty or occupied by part of the perimeter of a partially completed poly-
omino. (The boundary of an internal hole is considered part of the perimeter
of a polyomino).

Cutting the polyomino with a line leads to a set of arcs to the left of that line.
Each occupied edge is connected, via an arc to the left of the boundary line,
to exactly one other occupied edge intersecting the boundary. We choose to
encode the state o; of an edge as o; = 0 if the edge at position ¢ is empty,
o; = 1 if the edge is occupied and is the lower edge of an arc, and o; = 2 if
the edge is the upper edge of an arc. Due to the self-avoidance condition and
the two-dimensional nature of the problem this encoding uniquely specifies
the connectivity of the edges.

For each configuration of occupied or empty edges along the boundary, we
maintain a generating function for partially completed polyominoes. The gen-
erating function is a (truncated) polynomial p(z), where s = {o;} is the state
vector specifying the configuration. Polyominoes in a given rectangle are enu-
merated by moving the boundary so as to add one unit cell at a time. When
the boundary line is moved, a given state vector s is transformed into two
new state vectors s; and s, and zFp,(2) is added to p,,(z) and zFp,(2) is
added to ps,(z), where k; and ko count the additional unit cells added to the
polyomino.



In the case of enumeration by area, k; and ky depend on the state vector,
that is on whether the added cell is part of the polyomino or not. It is quite
simple to determine whether a newly added unit cell of the hexagonal lattice
belongs to a polyomino or not. Moving through a configuration we note that
as we reach the first occupied edge we pass from the outside to the inside of
a polyomino, the next occupied edge takes us to the outside again, and so
on. In this fashion all unit cells intersected by the boundary line are uniquely
assigned to the interior or exterior of a polyomino.

The rules for updating the partial generating functions are described in ref. [6]
in the case of enumeration by perimeter. The generalisation to enumeration
by area is quite simple since the encoding and transformations of the con-
figurations are identical. The only change is that the weights assigned to a
configuration count the area that has been already inserted. Furthermore, in
the TM algorithm we have implemented, we move the intersection line over
two vertices in one step instead over one vertex as in ref. [6]. The updating
rules for polygons by area are given in [25]. The updating rules for polyominoes
are given in Table 1. There is only one change from the rules in [25], to include
the rule that permits the formation of holes. At the upper and lower boundary
of the finite lattice the TMs are appropriately modified. The boundary line is
drawn either vertically or horizontally through the rectangle. One follows the
orientation in which the line intersects fewer edges. In the case of a horizon-
tal boundary the TMs are appropriately modified at both the left and right
boundary of the finite lattice.

If one wants to calculate the coefficients p, up to Npax, the maximal number
of edges which the boundary line intersects in any of the required finite lattices
grows as 2Nmax/3. (This grows as Npax/2 in the case of square lattice poly-
ominoes). Every finite lattice falls into one of two cases, m > 2n or m < 2n.
In the first case a vertical boundary is used. In the second case, parenthesised
below, a horizontal boundary is used. It is not necessary to calculate every
Pinn(2) separately. One can consider all the finite lattices Z!, , with n fixed, i
fixed and m > 2n (m fixed, i fixed and n > m/2) together. That is to say, we
can calculate the p!,  (z) of all these finite lattices in one sweep by aligning
the left (lower) sides of the finite lattices. The boundary is moved from left
to right (bottom to top). When a polyomino is closed it counts towards the
Dby (2) which is determined by its bounding rectangle.

In ref. [11] improvements of the FLM/TM were discussed which we have ap-
plied to the enumeration of polyominoes on the hexagonal lattice. The major
improvement comes from the calculation of the polyominoes that span the
finite lattices in length and width and not only in length as in previous work.
This increases the number of state vectors required to describe all configu-
rations by a factor of almost four, since one has to store a parameter that
keeps track of whether the polyomino has touched the lower boundary of the
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rectangle and whether it has touched the upper boundary. This enables one
to calculate how many cells are needed to close the polyomino (or find a lower
bound) such that the resultant polyomino touches both the upper and the
lower boundaries, stretches to the right boundary and finally that the result-
ing configuration is connected. If in addition we store the minimal area to the
left of the intersection line we can calculate the minimal area (or a lower bound
on the area) which every polyomino with the particular configuration on the
intersection will have. If this is larger than N, the configuration is discarded.
This leads to an exponential reduction in the number of configurations that
have to be stored. In the original approach all possible configurations were
kept.

From the foregoing discussion of the encoding of the state vectors, it is clear
that since every occupied edge is uniquely matched, any configuration is just
an example of perfectly matched parenthesis with gaps. These are well-known
in the combinatorics literature, (see [23], sequence M1184), and are called
Motzkin numbers. For our purpose all we need to know is that the number of
Motzkin numbers of length m grows like 3™. This exponential growth obvi-
ously determines the computational complexity of the original approach. The
maximal number of bonds intersected by the boundary line grows as 2N,,/3.
This implies that the complexity of enumerating polyominoes of size n grows
as 3?"/3 x~ 2.08", multiplied by some polynomial in n. Thus this approach al-
ready provides a dramatic improvement over pre-existing direct enumeration
algorithms, which have complexity 5.18". With the further improvements we
have described, it is not possible to give a theoretical analysis of the com-
putational complexity of the improved algorithm, but an empirical analysis
suggests that the improvements reduce the complexity to A" with A\ ~ 1.65.

In this way we have obtained the coefficients p, for p < 35. The calculation
took about 10 weeks on a single processor Compaq AlphaServer ES40, and
utilised up to 5GB of memory. To minimise memory requirements, all calcula-
tions were done using 16 bit integers, modulo a prime. This was repeated five
times, using five different primes, and the final result reconstructed using the
Chinese Remainder theorem. Using 32 bit integers would have required only
three runs, but would have doubled the memory requirements. With more
memory still, only one run would be needed, and thus the time taken would
be approximately two weeks. The results are shown in Table 2.

4 Series Analysis

From the coefficients p, given in Table 2, we have the first 35 terms in the
generating function for polyominoes, defined by P(z) = >°,,>1 pn2".
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Given the expected asymptotic behaviour p, ~ C7™nf, it follows that the
expected generating function behaviour is P(z) = 3, pn2™ = A(z)(1—72)~%7".
Here C = A(1/7)/T'(0 + 1), and the radius of convergence of the generating
function is given by 1/7. As we alluded to above, we find below that § = —1,
so that the exponent —f—1 = 0. This corresponds to a logarithmic singularity,
so that in fact

P(z) =) pn2" =~ A(2) log(1 — 72). (7)

We have used two methods to analyse this series. Firstly, to obtain the sin-
gularity structure of the generating function we used the numerical method
of differential approximants [9]. Very briefly, in this method we approximate
the generating function by the solution of a linear, inhomogeneous, ordinary
differential equation (o.d.e.) with polynomial coefficients. That is to say, we
insist that the power series expansion of the solution of the o.d.e. agrees, or-
der by order, with the known coefficients of the generating function. One can
increase the degree of the polynomials, and the order of the underlying dif-
ferential equation until there are no more known coefficients. In practice, it
has been found that a first- or second-order o.d.e. is usually sufficient to ap-
proximate the singularity structure found in problems such as this. One then
solves the o.d.e. in the standard manner, the critical point being given by the
closest zero on the positive real axis of the polynomial multiplying the highest
derivative, while the corresponding exponent is obtained from the solution of
the appropriate indicial equation [27]. A substantial number of such differen-
tial approximants are constructed, and a statistical procedure used to estimate
the critical point and critical exponent [9].

Estimates of the critical point and critical exponent were obtained by averag-
ing values obtained from first order [L/N; M| and second order [L/N; M; K|
inhomogeneous differential approximants. These are the solutions of the dif-
ferential equations zR\} (2)P'(z) + RV (2)P(2) = Qr(z) and 22RP P"(2) +
2R\ (2)P'(z) + RY (2)P(z) = Qr(2) respectively, where R and @) are poly-
nomials of degree given by their subscripts.

In particular, we used this method to estimate the growth constant 7 and the
critical exponent #. As mentioned above, there is a prediction [21] that § =
—1, which we also confirm numerically. Imposing this conjectured exponent
permitted a refinement of the estimate of the growth constant—providing so-
called biased estimates.

Our analysis is based on approximants such that the difference between N, M,
and K didn’t exceed 2. These are therefore “diagonal” approximants. Some
approximants were excluded from the averages because the estimates were
obviously spurious. We found many first order approximants were defective,
so our analysis is based on second and third order approximants. The fact
that first order approximants were defective (unlike the analogous analysis
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for hexagonal polygons enumerated by area, as reported in [25]) suggests the
presence of non-analytic corrections to scaling in the case of the polyomino
generating function. Such non-analytic terms were found to be absent for
polygons enumerated by area [25]. As we find below, there appears to be a
non-analytic correction-to-scaling term in the polyomino generating function,
with value 3/2. Second and higher order differential approximants can accom-
modate non-analytic corrections-to-scaling, and so our analysis is based on
these approximants. From second and third order approximants we estimate
that 1/7 = 0.1929331(3) and 1 + 6 = —0.0003(5).

As discussed earlier there is very convincing evidence that the critical exponent
f = —1 exactly. This is certainly borne out by our numerical estimate above.
If we assume this to be true, then we can obtain a slightly refined estimate of
the critical point 1/7. We observe that there is an almost linear relationship
between the estimates for 146 and 1/7 and hence find that for # = —1 we can
estimate 1/7 = 0.19293295(5) and thus 7 = 5.1831478(17). The biased and
unbiased estimates are less precise than in the case of hexagonal polyominoes
enumerated by area [25]. This is due to the simpler singularity structure, that
is to say the absence of non-analytic corrections-to-scaling, in that case.

Once the exact value of the exponent was conjectured, and the growth constant
accurately estimated, we turned our attention to the “fine structure” of the
asymptotic form of the coefficients, by fitting the coefficients to the assumed
form

pn = [2"|P(2) = 7"n"! Z ai+1/nf(i). (8)

i>0

In the most favourable circumstances, if there is no non-analytic correction
term, then f(i) = 4. That was found to be the case for hexagonal polygons
enumerated by area [25]. In some problems there is a square-root correction
term which means f(i) = i/2, while a logarithmic correction implies more
subtle behaviour. In all cases, our procedure is to assume a particular form
for f(i), and observe how well it fits the data. With the long series we have at
our disposal, it is usually easy to see if the wrong assumption has been made,
as if so the sequence of amplitude estimates a; either diverges to infinity or
converges to zero. Once the correct assumption is made, convergence is usually
rapid and obvious. A detailed demonstration of the method can be found in
refs. [1,11].

For polyominoes it appears that there is a non-analytic correction with expo-
nent equal to 3/2. This behaviour was first identified for square-lattice poly-
ominoes in [12], and, as we might expect from universality arguments, the
same exponent structure is evident for hexagonal polyominoes. As remarked
above, for polygons enumerated by area, there appears to be no evidence for
any non-analytic corrections [12,25].
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We conjecture that the asymptotic form for the polyomino coefficients is as
given by equation (8), with f(0) = 0, f(1) = 1, f(2) = 3/2, f(3) = 2,
f(4) = 5/2, etc. From (8) with these values of f(i) follows the asymptotic
form

Pn=7"n""a1 + az/n+ aa/n3/2 + as/n” + a5/n5/2 +0(n7?)]. (9)

Using the central estimate 7 = 5.1831478 quoted above, we show in Table 3
the estimates of the amplitudes aq,--- ,as. From the table we estimate that
a1 ~ 0.2734618, ay ~ —0.2060, a3 ~ 0.242, a, ~ —0.15 and a5 ~ 0.04,
where in all cases we expect the error to be confined to the last quoted digit.
The excellent convergence of all columns is strong evidence that the assumed
asymptotic form is correct. If we were missing a term corresponding to, say,
a quarter-integer correction, the fit would be far worse. This is explained at
greater length in ref. [1]. Of course, if the correction-to-scaling exponent were
1.49 instead of 1.5 as assumed, our analysis would not be sensitive enough to
detect this. There seems no reason however, to expect anything other than
simple rational fractions for exponents in such problems. So good is the fit to
the data that if we take the last entry in the table, corresponding to n = 35,
and use the entries as the amplitudes {a;}, then all the coefficients beyond
the first are given either exactly (if rounded to the nearest integer), or to the
same accuracy as the leading amplitude.

This analysis refers to the generating function for fized polyominoes. For free

polyominoes, the estimates of # and 7 are, as shown above, identical to the

corresponding values for fixed polyominoes, while the amplitudes just need to
be divided by 12.

5 Bounds on 7

5.1 Lower bound

A weak lower bound is immediately attainable from equation (2). Using pss
we obtain a lower bound of 4.50991.

This bound can be improved using the techniques developed by Rands and
Welsh in ref. [22]. Using concatenation arguments they showed that if we define
a sequence {c,}, ¢, > 0, such that

Pntl = Cny1+ CuP1 + - - CoPp1 + C1Dn, (10)
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and construct the generating functions

Pu) =1+ pau", (11)
n=1
and -
Clu) = ) cau®, (12)
n=1
then

P(u) =1+ P(u)C(u) (13)
and P(u) is singular when C(u) = 1. The coefficients in C(u) are obviously
constructible to the same order as known for P(u). If we look at the polynomial
Cy obtained by truncating C(u) at order N then the unique positive zero,
1/7y, of Cxy — 1 =0 leads to a lower bound for 7, that is 7y < 7.

In ref. [22] the method was first applied to the generating function of poly-
ominoes on the hexagonal lattice. Using the longest available series at the
time of 16 terms [24], the bound 7 > 4.43 was obtained. The application of
the method to our series up to area 35 leads to an improved lower bound of
4.80491. More elaborate concatenation schemes, such as that described in [22]
and in ref. [28] for square lattice polyominoes, are discussed further in ref. [26].

5.2 Upper bound

A crude upper bound is py < 2%". This can be seen from the following argu-
ment: A polyomino of area n is bounded by a non-reversing, non-crossing walk
of length at most 2 + 4n. If a bond is visited once it is part of the boundary
of the polyomino, that is it is either part of the outside boundary or it is part
of the boundary of a hole. If it is visited twice it is an internal bond of the
polyomino. This is illustrated in Figure 7. Note that there is usually more
than one walk that defines the same polyomino. Further the area enclosed by
the walk, excluding the walk itself, is connected. The last property ensures
that we know that a walk of length 2 4 4n can define the boundary. The first
and last steps can be chosen to be fixed. As the co-ordination number of the
hexagonal lattice is 3, the non-returning walk has at most two choices at every
step. This immediately gives the above bound.

Obtaining a good upper bound to 7 is an involved computation and will be the
subject of a separate paper [26]. In this article we merely outline the method,
and give the result.

W. L. Lunnon [16] found an upper bound for the polyomino growth constant
of 6.75. To improve this bound we apply the ideas of Klarner and Rivest [15]
which were inspired by Eden [3]. Klarner and Rivest developed a method which
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involves successive improvement. The idea is that each polyomino is converted
to a tree on the dual lattice, in this case the triangular lattice. We describe a
mapping that associates a unique spanning tree with each polyomino. Then,
by relaxing the rules for the construction of such a tree, we end up with an
algorithm that overcounts the number of polyominoes. Unlike the generating
function for the original problem, we can determine the radius of convergence
of the “overcounted” polyominoes, which therefore provides an upper bound.
The algorithm has the advantage of being amenable to systematic improve-
ment.

The mapping from polyomino to tree is done by placing a site at the centre
of each hexagon, and joining certain sites if their associated hexagons share
an edge. This is done in such a way that cycles are excluded, and all cells
included. Thus each polyomino is associated with a spanning tree, made up of
so-called “twigs”, (defined below) chosen from a fixed, finite set. The number
of spanning trees (and hence polyominoes) is bounded above by the number
of ways of concatenating the twigs. The cells in a twig are divided into two
types, namely dead and living. Additionally, forbidden cells may be associated
with a twig, though are not part of the twig, as shown in Figure 7. Every twig
contains at least one dead cell, but not necessarily any living cells. Further
one of the dead cells is marked by an incoming edge as a root cell. This
incoming edge defines the orientation of the twig. The living cells of a twig
have an orientation too, which is defined by the incoming edge of the internal
tree structure. Further, the living cells of a twig are linearly ordered. This is
necessary to ensure the uniqueness of the construction. Figure 7 shows the set
of basic twigs we use to construct both polyominoes and larger twigs. Any
polyomino can be constructed in the following way from the basic twigs: We
start with a single living cell that has an incoming bond from below, and we
keep a list of living cells which we use as a queue. The addition of twigs to
the configuration constructed so far proceeds as follows:

e Add a new twig by placing the root cell of the twig over the oldest living
cell such that the orientation of the twig and the oldest living cell coincide.

e The addition is legal if no other cells of the twig overlap with any part of the
configuration and no cell of the twig occupies a cell marked as forbidden.

e Make the forbidden cells of the twig forbidden cells of the polyomino.

e Append the living cells of the twig to the list of living cells observing the
order of the living cells in the twig.

e Remove the oldest cell from the list of living cells.

e Make the living cell where the twig has been added a dead cell.

This is repeated until no living cells are left. The construction of a polyomino
of size four is illustrated in Figure 8. We can construct a set of larger twigs
(i.e. twigs with more dead cells) from the basic twigs by using almost the same
algorithm. A complete set of twigs of size n contains all configurations that
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can be constructed according to the above rules and that contain exactly n
dead cells (and possibly living cells) or contain less than n dead cells and no
living cells. One can construct any polyomino with such a set of twigs. Note
that the set of basic twigs shown in Figure 7 is also the set of twigs of size 1
which have been constructed from the set of basic twigs.

The results are systematically improved by increasing the number of dead cells
in the set of basic twigs. The calculations become increasingly complex with
increasing twig size, requiring exponentially increasing amounts of computer
time. The bound we obtain here derives from twigs with 16 dead cells. The C
program ran for four weeks on a Maclntosh G3 computer.

From the determination of the twigs we proceeded similarly to Klarner and
Rivest. We assign to every twig ¢ a weight w; = 2™ 'y", where m — n is the
number of living cells of the twig and n is the number of dead cells of the twig.

If we relax the construction rules so that the legality of an addition of a twig
is not checked (this being the second bullet point above) we can write down
the two-variable generating function, f(z,y) = z/(1 — X; w;). Note that this
relaxation allows multiple occupancy of cells, and also allows forbidden cells
to be occupied. It is this that is responsible for the overcounting of spanning
trees (and hence polyominoes). We are interested in the diagonal terms ay,,
of the series expansion of f(x,y) = X, , @mn2™y". These terms represent
the configurations that contain no living cells and in which all polyominoes
are included. Therefore we obtain an upper bound for the polyomino growth
constant if we can find the growth constant for the a,,,. Klarner and Rivest [15]
show how one can obtain the growth constant of the diagonal terms of a
rational two variable generating function. This requires a change of variable
so that the residue theorem can be applied. The diagonal function fp(z) =
Yon Anpa™ can be written as a sum over residues.

In this way, and after substantial computation using a twig size of 16, we
obtain the upper bound 5.9047. Thus we find

4.8049 < T < 5.9047. (14)

6 Discussion and conclusion

We have proved a number of results for polyominoes, including the existence
of a growth constant 7. We have established rigorous upper and lower bounds
on 7, and a precise numerical estimate of 7 = 5.1831478(17). We provide
compelling arguments that the generating function

anz" ~ A(z)log(1 — 72)[1 + B(z)(1 — TZ)3/2],
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and provide a (numerical) expansion of A(z) and B(z) around z = 1/7. This
analysis provides very strong evidence for the presence of a non-analytic cor-
rection term to the proposed asymptotic form for the generating function, with
value A = 3/2. Finally we give an asymptotic representation for the coeffi-
cients which we believe accurate to several significant figures for polyominoes
of any size at least up to 100.

We have presented an improved algorithm for the enumeration of polyominoes,
on the hexagonal lattice. The computational complexity of the algorithm is
estimated to be 1.65" for polyominoes of size n. Implementing this algorithm
has enabled us to obtain polygons up to area 35.

It might be thought that such a simply formulated problem should have a
“simple” solution. One piece of evidence against this belief is that decomposing
the coefficients into prime factors reveals frequent occurrence of very large
prime factors.

We also discuss the size of polyominoes. Many possible measures of size exist,
and most of these are equivalent. Accordingly, we focus on the mean-square
radius of gyration, (Rg)n of polyominoes of size n, and refer to compelling
numerical arguments [12] (though not a proof) that this grows as n®”, with
v = 0.64115(5), for square lattice polyominoes. Invoking universality, we ex-
pect this holds for hexagonal polyominoes too, though we have not explicitly
investigated this aspect.
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S B & 8§ axp
8§ & a8 B

Fig. 1. A polyomino that counts as one free polyomino but as twelve fixed polyomi-
noes

Fig. 4. A polyomino is shown with the corresponding embedding in the brick-work
lattice and the bounding rectangle Zé’?,.

type of vertex hexagonal lattice brickwork lattice

0 h 1
) e e

Fig. 5. The two types of vertices that appear on the brick-work lattice.
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Fig. 6. This figure shows two different manifestations of a polyomino with a hole
and a non-returning walk that defines the boundary.

Fig. 7. This figure shows the set of basic twigs used. The dark cells are dead cells,
the white cells are living cells and the cells marked with a cross are forbidden cells.

Fig. 8. This figure shows an example of a polyomino of size four being constructed
by the successive addition of twigs.
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Table 1

The update rules for polyominoes. A cell between the two input bonds can be part
of the polyomino, denoted Output;,gq4e, Or not, denoted Output,,isq.. When the
state ‘00’* is produced, the ends of the loops that have been closed have to be
relabelled appropriately. “$” indicates that the polyomino can be closed and added
to the total count if all other bonds on the intersection line are empty.

IHPUt OutPUtinside OUtPUtoutside

‘00’ z ‘00’, ‘12 ‘00, =12’
O |z, 100 |01, 10
02 | 202, 20 |02, z920
900 | 290, 0 |10, z0U
Q1| 2 A, 00* | 117,z 007
‘12’ z ‘12, $§ ‘12’,  z ‘00’
90 | 220, 02 | 920, z02
21 x 21, ‘00’ 21°, z ‘00’
99| £ 92, 00* | 22, £ ‘007*
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Table 2
The number pj of fixed hexagonal polyominoes of area h cells.

h Ph
1 1
2 3
3 11
4 44
5 186
6 814
7 3652
8 16689
9 77359
10 362671
11 1716033
12 8182213
13 39267086
14 189492795
15 918837374
16 4474080844
17 21866153748
18 107217298977
19 527266673134
20 2599804551168
21 12849503756579
22 63646233127758
23 315876691291677
24 1570540515980274
25 7821755377244303
26 39014584984477092
27 194880246951838595
28 974725768600891269
29 4881251640514912341
30 24472502362094874818
31 122826412768568196148
32 617080863446201431307
33 3103152024451536273288

15618892303340118758816
78679501136505611375745

W W
[ BTN




Table 3

A fit to the asymptotic form of the coefficients for fixed polyominoes p;, /7" ~
n~'[a1 + ag/n + az/n3/? + ay/n® + a5/n®? + ---]. The n'* estimate uses the five
coefficients py, Pn—1,--- , Pn—a to uniquely define the amplitude values. Estimates of
the amplitudes a1, a9, a3, a4, a5 are given.

n ai a2 as a4 as
15 0.2734537 —0.203715 0.218992 —0.06350 —0.06548
16 0.2734311 —0.200663 0.196603 —0.00193 —0.12564
17 0.2734515 —0.203625 0.219130 —-0.06615 —0.06059
18 0.2734451 —0.202632 0.211316 —0.04312 —0.08472
19 0.2734495 —0.203350 0.217149 —0.06086 —0.06554
20 0.2734513 —0.203662 0.219757 —0.06903 —0.05643
21 0.2734530 —0.203978 0.222468 —0.07777 —0.04643
22 0.2734548 —0.204329 0.225568 —0.08802 —0.03437
23 0.2734562 —0.204614 0.228147 —0.09677 —0.02381
24 0.2734574 —0.204889 0.230698 —0.10564 —0.01287
25 0.2734585 —0.205125 0.232932 —0.11358 —0.00283
26 0.2734594 —0.205332 0.234940 —0.12088 0.00660
27 0.2734601 —0.205508 0.236683 —0.12734 0.01512
28 0.2734607 —0.205655 0.238162 —0.13294 0.02266
29 0.2734611 —0.205773 0.239381 —0.13764 0.02911
30 0.2734614 —0.205865 0.240342 —0.14142 0.03438
31 0.2734617 —0.205931 0.241048 —0.14425 0.03841
32 0.2734618 —0.205973 0.241505 —0.14611 0.04110
33 0.2734619 —0.205992 0.241718 —0.14699 0.04240
34 0.2734619 —0.205990 0.241692 —0.14688 0.04223
35 0.2734618 —0.205967 0.241431 —0.14576 0.04054
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