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We study the correction-to-scaling exponents for the two-dimensional self-avoid-
ing walk, using a combination of series-extrapolation and Monte Carlo meth-
ods. We enumerate all self-avoiding walks up to 59 steps on the square lattice,
and up to 40 steps on the triangular lattice, measuring the mean-square end-
to-end distance, the mean-square radius of gyration and the mean-square dis-
tance of a monomer from the endpoints. The complete endpoint distribution
is also calculated for self-avoiding walks up to 32 steps (square) and up to 22
steps (triangular). We also generate self-avoiding walks on the square lattice by
Monte Carlo, using the pivot algorithm, obtaining the mean-square radii to
~0.01% accuracy up to N =4000. We give compelling evidence that the first
non-analytic correction term for two-dimensional self-avoiding walks is Aj =
3/2. We compute several moments of the endpoint distribution function, find-
ing good agreement with the field-theoretic predictions. Finally, we study a par-
ticular invariant ratio that can be shown, by conformal-field-theory arguments,
to vanish asymptotically, and we find the cancellation of the leading analytic
correction.
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1. INTRODUCTION

The study of the universal properties of self-avoiding walks (SAWs) in the
long-chain limit has been a central problem in both statistical mechanics
and polymer physics for more than three decades.!3 In an N-step chain,
the mean value of any global observable O typically has an asymptotic
expansion as N — oo of the form

a a bo by by
— pPo —_— — ...
(O)v = AN [1+N+N2+ A T AT T VAT
€0 C1 2
+"'+NA2+NA2+1+NA2+2+"']’ (L1)

where the leading exponent po» and the correction-to-scaling exponents
A1 <Ay <--- are universal, i.e. they depend on the spatial dimension d but
not on the microscopic details of the interactions (provided that the inter-
actions are short-ranged and primarily repulsive). This universality justifies
the intense efforts that have been devoted to determining these universal
exponents, using a variety of analytical and numerical approaches.

In this paper we will address the problem of determining the leading
non-analytic correction-to-scaling exponent A; for the two-dimensional
self-avoiding walk and for the closely related problem of self-avoiding
polygons (SAPs). At least two different theoretical predictions have been
made for the purportedly exact value of this exponent: A; =3/2 based
on Coulomb-gas arguments,*> and A; = 11/16 based on conformal-
invariance methods.(®) In addition, several numerical methods have been
employed to estimate Aj, notably exact enumeration and extrapolation
(series analysis)7~1?) and Monte Carlo.(18-2-23) The estimates of A; result-
ing from these numerical works are, for the most part, wildly contradic-
tory: even when one compares estimates produced by a single method,
such as series analysis, they range from ~ 0.5(8) to a2 0.65(:10.13.14)
~0.8509 to ~ 1714 to 1.5.06.17.19) Sjmilar variation can be found in esti-
mates of A; obtained from Monte Carlo studies, ranging from ~0.5(%) to
~0.6%3) to ~0.84CD to ~1.1%3 to ~1.2.20

Other models in the same universality class have also been considered,
yielding results in contrast with those for the SAW. For instance, for lat-
tice trails (connected paths where the self-avoidance constraint is applied
only to bonds, not vertices) it was shown by a transfer-matrix study*
that the correction-to-scaling exponent is indeed ~ 11/16, confirming an
earlier result based on series analysis.?>) This same transfer-matrix study
also found A;~3/2 for SAWs. What remains to be understood is why the
contribution with A;=11/16 seems to be absent for square- and triangu-
lar-lattice SAWs, yet present for trails.
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To further confuse the subject, we should mention the recent results
of Jensen®® for osculating SAPs on the square lattice: these are a superset
of SAPs in which bonds may touch at a vertex but not cross. In a sense
they interpolate between SAPs, in which intersections are strictly forbid-
den, and closed trails, in which crossing at a vertex is allowed. A careful
analysis of the corresponding series>®) shows very convincingly that Aj =
3/2 and finds no correction corresponding to A;=11/16.

To add to our list of unexplained phenomena, we remark on a recent
Monte Carlo study of SAWs on the Manhattan lattice,?”) where it was
found that the critical exponent y has the same value 43/32 as for SAWs
on regular lattices provided that the value A;=11/16 is used in the anal-
ysis. It is quite unclear why a different value of A should arise for the
Manbhattan lattice than is found for the square lattice.

Returning now to the simplest case of SAWs and SAPs on regular
lattices, the gross disparities among the extant estimates of the correc-
tion-to-scaling exponent might lead one to suspect that different methods
are computing different quantities. For example, it might be that some
methods are measuring (or predicting) the leading correction exponent Aq,
while others are measuring (or predicting) a subleading correction expo-
nent Ap or Aj, and still others are measuring some sort of “effective”
exponent A that represents phenomenologically the observed corrections
to scaling in some specified interval of walk length N (and arising in real-
ity from the sum of two or more correction-to-scaling terms).

Moreover, it may even be true that different observables produce
different patterns of nonvanishing corrections to scaling. For instance, the
A1=3/2 correction term appears to be present for SAWs but absent for
SAPs. While this may at first sight be considered a violation of universal-
ity, we show below that it is not.

Two recent analyses(!7-!?) based on very long series for square-lattice
SAWs and SAPs have, however, yielded a consistent and convincing pic-
ture of the corrections to scaling: the first non-analytic correction-to-scal-
ing exponent is indeed just A =3/2, as predicted by Nienhuis;*> but
there are also analytic corrections to scaling proportional to integer pow-
ers of 1/N, the first of which dominates asymptotically. More precisely, a
careful numerical study based on a 51-term SAW series!”) found that the
number of N-step SAWs on the square lattice is given asymptotically by

ey ~ wVN32[1.177043 40.5500/N —0.140/ N3/ —0.12/N? +- -]
+(—w)NN32[-0.1899 4+ 0.175/N — 1.51/N?+--]. (1.2)

It is likely that previous studies identified some sort of effective expo-
nent that reflects a combination of the effects of the 1/N and 1/N3/?
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correction-to-scaling terms (see Section 2.2 for further discussion of this
point). Similarly, a careful numerical study based on a 90-term SAP
series!?) found that the number of 2N-step SAPs on the square lattice is
given asymptotically by

pan ~ N N=32[0.0994018 — 0.02751 /N 4 0.0255/N> +0.12/N3 + - -];
(1.3)

note that here there is no N=3/% (or N—3/2) correction term. Finally, a
recent transfer-matrix analysis®® of SAWs on the square lattice also found
compelling numerical evidence in favour of the value A;=3/2, and against
all values A significantly less than 3/2.

One possible cause of some confusion is that, because the value of the
leading critical exponent of the SAP generating function is 2 —« =3/2, any
correction-to-scaling term with A = half-integer “folds into” the analytic
background term and is therefore undetectable! In other words, no cor-
rections proportional to N~2 appear in the coefficients py. In order to
understand this point, let us recall that the critical exponent « is defined
by the leading asymptotic behavior py ocu™¥ N*=3 of the polygon counts,
corresponding to a leading behavior P(x) =) N0 pnxN ~ const x (1 —
x/x:)%% as x + x. =1/ for the polygon generating function. If we now
include both analytic and non-analytic corrections to scaling, the polygon
generating function can be written generically as

Px)=Y " pnx" ~A) + B —x/x) [ +c(l —x/x) 4]
N2>0
(1.4)

with A(x) and B(x) analytic in the neighbourhood of the critical point
xe=1/u. Since a =1/2 for two-dimensional SAPs,*>19) if A; = half-inte-
ger the above equation may be rewritten as

P(x)=Y " panx ~A@)+ Bx) (1 —x/x)[1 4], (1.5)
N2>0

with the (1 —x/x.)?! correction term absorbed into the analytic back-
ground term A\(x). Therefore, if (1.4) holds, no correction of the form
N~21 is present. On the other hand, if the polygon counts were to exhibit
a behaviour of the form py ocu¥ N*3[14---4a/N> +...] with a=1/2
and Aj;=3/2—and hence include a term o u™ N~%—then the generating
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function P(x) would exhibit, on top of the (1 —x/x.)*/? leading behaviour,
a non-analytic confluent term of the form (1 —x/x.)3log(l —x/x.) in addi-
tion to the analytic term (1 —x/x.)3. However, as discussed in some detail
in ref. 19, there is no evidence for a term of the form a/N3/2 in the anal-
ysis of the SAP count series, and indeed there is considerable evidence for
the absence of such a term. There is, however, abundant evidence of such
a term in the radius-of-gyration series of SAPs.(2%)

In the present paper we make some further progress in supporting the
assertion that A;=3/2 for SAWs on regular two-dimensional lattices (here
square and triangular). First, we make a conventional analysis of correc-
tions to scaling in the standard observables (Rf), (Réz,) and (R,Z,l>; our con-
tribution here is to present and use extended series expansions and a more
efficient Monte Carlo algorithm. The results of this analysis are consis-
tent with other recent work in supporting the conclusion that A|=3/2.
In the course of this analysis we point out that, for certain observables,
pairs of correction terms of opposite sign can (and do) conspire to give
an effective exponent that is smaller than both of the individual exponents;
this explains the apparent exponents A <1 observed in some earlier work.
Second—and this is perhaps our main contribution—we point out sev-
eral observables in which a correction-to-scaling term becomes the leading
term. These include: (a) the combination %(R;) —2(R,2n) + %(RZ), which
arises in the conformal-invariance theory;-39 and (b) quantities related
to the breaking of Euclidean invariance down to the lattice symmetry
group, the simplest of which is (on the square lattice) the fourth-order
moment (r*cos40) = (x* — 6x2y% + y*). Analysis of these quantities by
Monte Carlo methods yields only a modest improvement over the analysis
of conventional quantities—the trouble is that the new quantities exhibit a
low “signal-to-noise ratio”—but the series analysis is quite precise.

The plan of this paper is as follows. In Section 2 we define the quan-
tities to be studied and collect some theoretical results that will be used or
tested in the following sections. Section 3 reports the results of our series
analysis: first, we analyze the SAW counts (Section 3.3); then, we analyze
the radius of gyration, the end-to-end distance and the average distance of
a monomer from the endpoints, along with their invariant ratios (Section
3.4); finally, we analyze the higher-order rotationally-invariant moments
of the endpoint distribution function (Section 3.5) and the corresponding
non-rotationally invariant moments (Section 3.6). For each of them, we
determine the asymptotic behaviour as N — oo, focusing in particular on
the correction-to-scaling exponent A; and on the behaviour at the antifer-
romagnetic singularity (in the case of the square lattice). In Section 4 we
report the analyses of our Monte Carlo data, confirming the absence of
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a correction-to-scaling exponent A;=11/16. Finally, in Section 5 we draw
our conclusions.

2. DEFINITIONS AND THEORETICAL BACKGROUND

In this section we review briefly the basic facts and conjectures about
the SAW that will be used (or tested) in the remainder of the paper.

2.1. Definitions and Notation

Let £ be some regular d-dimensional lattice. Then an N-step self-
avoiding walk (SAW) w on L is a sequence of distinct points wg, wy, ... ,wyN
in £ such that each point is a nearest neighbour of its predecessor. We
assume all walks to begin at the origin (wo=0) unless stated otherwise.

First we define the quantities relating to the number (or “entropy”) of
SAWSs. Let cy [resp. cy(x)] be the number of N-step SAWs on L starting
at the origin and ending anywhere [resp. ending at x]. Then ¢y and cy(x)
are believed to have the asymptotic behaviour

ey ~ const x uN NY ! 2.1
en(x) ~ const x uVN¥2  (x fixed £0) (2.2)

as N — oo; here u is called the connective constant of the lattice, and y
and « are critical exponents. The critical exponents are believed to be uni-
versal among lattices of a given dimension d. For rigorous results concern-
ing the asymptotic behaviour of ¢y and cy(x), see refs. 31-34

Next we define several measures of the size of an N-step SAW:

o The squared end-to-end distance
RZ= a),2\,. (2.3)

(S

o The squared radius of gyration

1 N
RPm i — ). 2.4
g 2(N+1)2 igo((l) U)j) ( )

o The mean-square distance of a monomer from the endpoints
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R2 = !
MmN +1) ) <

NME

[a) + (w; —wp) ] 2.5)

We then consider the mean values (Rg) N> (Ré) y and (ern) N in the proba-
bility distribution that gives equal weight to each N-step SAW. Very little
has been proven rigorously about these mean values, but they are believed
to have the leading asymptotic behaviour

(RN. (ReIN. (Ry)n ~ const x N" (2.6)

as N — oo, where v is another (universal) critical exponent. Hyperscal-
ing®> predicts that

dv=2—«. 2.7

For SAWs in two dimensions, Coulomb-gas arguments*> as well as
arguments based on stochastic Loewner evolution (SLE)3® predict that
v=3/4, « =1/2 and y =43/32. Prior numerical studies have confirmed
these values to high precision;!7-1%-37 in this paper we take them for
granted.

The amplitude ratios

(Rg)N
Ay = R2w (2.8)
_ (Rpw
By = (R2)w 2.9)

are expected to approach universal values in the limit N — oo, which we
call A and B; one of our goals is to estimate these limiting amplitude
ratios. Many other universal amplitude combinations (notably involving
SAPs) are discussed in ref. 38, 39.

Of particular interest is the linear combination%-30)

1
FNE<2+£)AN—2BN+— (2.10)
Yh 2
and the corresponding unnormalized quantity

1
fn = Fy(R)N = (2+ ;-;) (ReIN — 2(Re)N + 5 (RN, (2.11)

2
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where y;=1/v and y, =14 y/(2v) are the thermal and magnetic ren-
ormalization-group eigenvalues, respectively, of the n-vector model at
n=20. In two dimensions—where y; =4/3 and y, =91/48, hence 2 +
yi/yh = 246/91—Cardy and Saleur® (as corrected by Caracciolo, Pel-
issetto and Sokal®?) have predicted, using conformal field theory, that
limy_ o Fy=0. We shall henceforth refer to this relation as the CSCPS
relation. This conclusion has been confirmed by previous high-precision
Monte Carlo work®? as well as by series extrapolations.4?) It is therefore
of interest to examine the rate at which Fy tends to zero, as this gives
information on the correction-to-scaling terms. We will discuss this from a
theoretical point of view near the end of Section 2.2, and from a numeri-
cal point of view in Sections 3.4.2 and 4.2.

It turns out that limy_, o Fy =0 holds not only for the ordinary
square-lattice SAW, but also for SAWs with nearest-neighbour interactions,
right up to (but not at) the theta point.*!) Moreover, the relation appears
to hold at the theta point if 2+ y;/y; is given its theta-point value 23/8
instead of 246/91. This observation is used in ref. 41 to locate the theta
point more precisely.

We shall also consider higher moments of the end-to-end distance.
Limiting ourselves to two-dimensional lattices, let us write

oy = (x,y) = (rcosf,rsinf). (2.12)
The Euclidean-invariant moments (r¥) y are of course expected to behave as
(r*yn ~ const x N (2.13)

as N — oco. One can consider the dimensionless ratios

(ryy

2k,

My y = : (2.14)

which approach finite limits for N — oco; these limiting ratios My o are
universal quantities that characterize the end-to-end distribution func-
tion. Estimates of My », have been obtained in ref. 42 using field theory
and the Laplace-deGennes transform method. It turns out™*#% that the
2-point function is very nearly equal to that of a free field, so that when
the rescaled inverse propagator in momentum space’ is written as

55(4) is the Fourier transform of the two-point correlation function, rescaled so that the first
two terms at small ¢ are 1—g2+ 0(g*).
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o0
D@ =144+ bag™. (2.15)
n=2
one has 1>>|by|>>|b3|>> |bs|>.... One obtains*?)
k—1

)
[1—byk— 1)+ Rk ] | <1+7’), (2.16)

J=0

I'(y +2v)k
['(y +2kv)T (y)k-1

M2k,oo =

where Ry is a very small correction (unless k is very large) that involves

the constants b3, by, ... as well as higher powers b;bj, bbby, ... .
Explicitly,
a 1
Ry =) (=" (k+1-n)b, + z(k—2)(k-3)b§ +o (217
n=3

Note that Ry, =0 exactly. The universal nonperturbative constants by, b3, ...
have been obtained from the analysis of exact-enumeration series on the
square, triangular and hexagonal lattices.**) Numerically, it is found“®
that by is extremely small, b =0.00015(20), and that b3 is even smaller,
|b3] <3 x 107>, Using the estimate of b, in (2.16) and neglecting R, we
obtain for the lowest values of k:

Moo = 1.44574(28) (2.18)
Mg o = 2.5876(10) (2.19)
Mg o0 = 5.3805(32) (2.20)
M10.00 = 12.557(10) . (2.21)

A second class of interesting observables are moments that are invari-
ant under the symmetry group of the lattice but noz under the full Euclid-
ean group: examples are the moments (¥ cosnf) with n#0, where for the
square (resp. triangular) lattice » must be a multiple of 4 (resp. 6). We
expect these non-Euclidean-invariant moments to behave as

(r* cosn@) ~ const x NkV~%nr (2.22)
where Ap; >0 is a new correction-to-scaling exponent®? associated with

the breaking of full rotation invariance down to the lattice rotation group:
it thus depends on the lattice in question (e.g., square or triangular) and
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is in general different from the leading correction-to-scaling exponent A
(which corresponds to a Euclidean-invariant irrelevant operator).

For Gaussian models—and thus also for n-vector models (including
the SAW case n=0) in dimension d >4—we have A, =2v=1 on any hyp-

ercubic lattice. For n-vector models in dimension d =4 — ¢, this relation is
modified at order ¢2:(*3)

7 n+2 , 3
Apyp=Vv|24+ ———— 0] . 2.23
nr V|: + 20 (n+8)26 + O(e )i| ( )

In dimension d =3, several alternative methods—field theory and exact-
enumeration analysis—show that Ap; is very close to 2v, though not
exactly equal.*? In two dimensions on the square lattice, A, =2v exactly
for the Ising model and for the n-vector model with n >3 (in the lat-
ter case with logarithmic corrections).*> For the triangular lattice, similar
arguments®? predict Ap =4v.° For the Ising model, these predictions
can be obtained using conformal field theory (see ref. 45, 46 for the
classification of the subleading operators appearing in the Ising model);
they can be checked explicitly®? for at least one specific observable, using
the analytic expression for the mass gap.(*7-48:4)7 Tt is therefore suggestive
to conjecture that the same relations between Ap, and v are valid for the
SAW. This would predict Apr =3/2 on the square lattice, and Ay =3 on
the triangular lattice. In Section 3.6 we will test (and confirm) this conjec-
ture, by series analysis, for both square-lattice and triangular-lattice SAWs.

2.2. Corrections to Scaling

Let us now make some general remarks concerning corrections to
scaling. Clearly, (2.1)/(2.2)/(2.6) are only the leading term in a large-N

%For the hexagonal lattice, A, =4v for observables that break rotational invariance but are
invariant under interchange of the two sublattices, while Ap. =3v for observables that dis-
tinguish the two sublattices.?

7For instance, consider on a square lattice the mass gap m(7) in the direction 7 defined as

. .1 .
m(A) = rlggolrllog<z G(x)) ,

X-n=r

where 7 = (cosf, sin#) is a unit vector and the summation runs over all X such that X -Ai=r.
From the exact solution,*” one can easily see that, for g — S,

m(i) = mo(Be — B [1+ (Be — B (a0 +bo cosd0) + - |

with by #0. This result shows explicitly that A, =2=2v.
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asymptotic expansion. According to renormalization-group theory,*?) the
mean value of any global observable O behaves as N — oo as

a  a bo by by
_ Po oy e
(O)y = AN [1+N+N2+ + At ya Tt
o 1 1)
+NA2+NA2+1+NA2+2+”']' (2.24)

Thus, in addition to “analytic” corrections to scaling of the form a;/N¥,
there are “non-analytic” corrections to scaling of the form b;/N21+K,
cx/N22tK and so forth, as well as more complicated terms [not shown in
(2.24)] which have the general form const/ N 1A1+ka82++ where ky, ko, ...
and [/ are non-negative integers. The leading exponent po and the cor-
rection-to-scaling exponents Aj; < Ay < --- are universal; po of course
depends on the observable O in question, but the A; do not. The var-
ious amplitudes (both leading and subleading) are all nonuniversal (and
of course also depend on the observable®). However, ratios of the corre-
sponding amplitudes A, by and ¢y (but not a; or the higher by, c;) for
different observables are universal.>%-31)

In fact, (2.24) is incomplete, as there are “mixing” terms arising from
the fact that the temperature deviation from criticality is a smooth but
nonlinear function of the nonlinear scaling fields g and gn. This has the
consequence®>3239 that the susceptibility (or SAW generating function),
which has a leading singularity (x. —x)~7, also contains an additive term
proportional to the energy, of order (x.—x)!"%. In the case of the two-
dimensional Ising model, we have « =0, and this term is responsible for
the logarithmic terms in the susceptibility, as was recently exhaustively
studied in ref 56. For the two-dimensional SAW, we have o =1/2, and
so one would expect a term K(x)(xc —x)!/2 in the SAW generating func-
tion. To incorporate this term requires that the naively expected asymp-
totic form

en ~ NN 2a0 a1 /N +ay /N + a3 /N* +as /)N +---] (2.25)
be modified to read

CN ~ ,uNN“/32[a0+a1/N+a2/N3/2+£13/N2+a4/N5/2+'"]
+uNNTa+a /N+---]. (2.26)

8Sometimes a particular correction-to-scaling amplitude will vanish for some observables but
not for others (e.g. for symmetry reasons).
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For loose-packed (i.e., bipartite) lattices, such as the square and simple-
cubic lattices, there is an additional set of terms arising from the antifer-
romagnetic singularity, of the form

d d e e e
(—1)NNq[do+Nl+N—22+-~-+ : : : ]

NAF + NAMFHL  yatte +
(2.27)

where the exponent ¢ of course depends on the observable. We know of
no theoretical argument that predicts the value of the exponent A?F. For
the exponent ¢, in the closely related problem of the Ising-model suscep-
tibility in two and three dimensions, Sykes®”) has given a configurational
“counting theorem” that enables one to guess that the antiferromagnetic
susceptibility behaves as the internal energy. This reasoning is discussed in
greater detail in ref. 58, 59.° It follows that there should be a term in the
susceptibility of the form D(x)(1 +x/x.)!~® [where D(x) is analytic in a
neighbourhood of the antiferromagnetic critical point x =—x.] and thus a
term (—x.)"VN%~2 in the high-temperature-series coefficients. This result
can be put on more solid ground®” by noting that at the antiferromag-
netic critical point the (unstaggered) magnetic field is an irrelevant vari-
able, so that the leading contribution to the free energy is

F(x,h) = agi(x, ))> ™ + Freg(x, h), (2.28)

where x is the inverse temperature and g;(x,h) is the nonlinear scal-
ing field associated with the temperature at the antiferromagnetic critical
point. Since

gi(x,h) = (1 +x/x)+ah®+---, (2.29)

by performing the appropriate derivatives we obtain the result reported
above (provided of course that a;#0). This argument is very general and
applies to any n-vector model; in particular, it applies for n=0, i.e. to the
SAW. Thus, for the SAW counts cy we expect a term (—u)Y N9~2, so that
g=a —2 for this observable.(6)

The argument of Sykes can be generalized to higher moments of the
two-point function, ie., >, [r1?G (r). Also in this case one can identify

9The basic idea is that the susceptibility can be rewritten as the sum of two terms: one pro-
portional to the energy, and a second one which can be argued (by series analysis) to give
an algebraically small contribution near the antiferromagnetic critical point.
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two terms: one is proportional to the energy, while the other is conjec-
tured to give an algebraically small (i.e., noncritical) correction at the anti-
ferromagnetic critical point. Such a conjecture was numerically verified in
ref. 62 for the three-dimensional Ising model. As for the susceptibility, this
implies that asymptotically the moments have the form D(x)(1+x/x.)!~2,
with D(x) analytic, for any k. Therefore, a term (—u) N®=2 should be
present in their high-temperature-series coefficients. Extending this conjec-
ture to the n-vector model and in particular to the SAW (n=0), we predict

en ~ VN ag+-- 1+ (VN dg +- -1, (2.30)
en(rP oy ~ NN g 4] (NN dg 4] (231)

For k=1, (2.31) gives the behaviour of cN(Rez) ~. It may seem natural to
generalize the expression (2.31) to the other metric quantities, namely R2
and R(g. Surprisingly (to us), our subsequent analysis (see Section 3.4.2)
shows that, while the unnormalized second-moment series of the end-to-
end distance series behaves precisely as expected in (2.31), the unnormal-
ized series corresponding to both the radius of gyration and the mean
monomer-endpoint distance behave a little differently. We find

en(Rg N ~ kNN a1+ )V dg 0] (232)

That is to say, the antiferromagnetic exponent is different in the latter
cases, namely O instead of o« —2=—3/2. Nevertheless, by taking the quo-
tient of either (2.31) or (2.32) by (2.30), we obtain in all cases

(R*)N ~ N¥[ag+---]1+ (=D N + -] (2.33)

with ¢ =2v 4+« — 1 — y. [For the end-to-end distance, the dominant anti-
ferromagnetic correction always comes only from (2.30); for the other two
metric quantities, it comes from both (2.30) and (2.32).] For the end-to-
end distance only, we have the additional relation

a(’)/ ao
0 0

Similarly, the rotationally—invariant higher moments (r%*)y are
expected to behave as

(r)n ~ N*¥fag 41+ (DY NH[dg +- -] (2.35)
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with g =2kv +a — 1 —y. The coefficients a;’ and d;’ also satisfy a rela-
tion analogous to (2.34). Our numerical analysis, described below, pro-
vides supporting evidence that the corresponding exponents are indeed
qr=3k/2—59/32 in two dimensions (see Sections 3.4.2 and 3.5).

Finally, the non-analytic correction-to-scaling exponent A?F was
found numerically, in the case of the square-lattice SAW counts, to be
1.07 Tt would seem likely that this value should also hold for other prop-
erties, such as the metric quantities (R?)y. Our numerical studies, dis-
cussed below, are consistent with this conjecture—or, put another way,
they are insufficiently sensitive to refute this obvious first guess.

Let us now return to the question of the corrections to the CSCPS
relation limy_.co Fy =0 [cf. (2.10)]. Series analysis and Monte Carlo sim-
ulations (see Sections 3.4.2 and 4.2 below) indicate that Fy ocN_3/2,
i.e. that the leading analytic correction cancels. Such a cancellation may
seem surprising, but it can be understood by means of a standard
renormalization-group argument. Consider the continuum O(n) model
with Hamiltonian

H="H"+ /dzr [tE(r)+hs' ()], (2.36)

where H* is the fixed-point Hamiltonian, and E(r) and s'(r) are the
energy and spin operators, respectively. The CSCPS relation®®39 is a con-
sequence of the sum rule

/ d*r (©(0)°°M@ )ty = 0, (2.37)

where ©(r)°" is the trace of the continuum stress-energy tensor, and of
course we must set n =0 to obtain SAWSs. In order to translate this con-
tinuum relation into a lattice one, we must relate the continuum operator
to its lattice counterpart. It is natural to assume that the trace of the lat-
tice stress-energy tensor, ©(r)!, whose explicit form is given in ref. 29,
behaves as

O = Z(t, O )™ + ... | (2.38)
where Z(z, h) is a smooth function of # and &, and the dots represent the

contributions of the subleading operators. As a consequence of (2.38) we
have

/ d*r (©(0)ME ()latty = O A1, RO/ WAL (2.39)
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No corrections of order ¢ appear in the previous relation. Equation (2.39)
therefore implies the absence of the analytic corrections in the CSCPS
relation limy_, oo Fy =0.

The observation that Fiy o« N3/ implies a constraint on the subdom-
inant amplitudes. More precisely, if we write

(RN ~ aeN32 +beN'? + ¢+ O(1/v/N) (2.40)
(Re)N ~ agN**+bgN'? + ¢ +O(1//'N) (2.41)
(R2)N ~ am N> + by N2 4 ¢y + O(1/+/N), (2.42)

then the original CSCPS relation Fy — 0 implies

9lae = 364am —492a,, (2.43)
while the absence of a 1/N term in Fy means that the leading subdom-
inant terms also satisfy an amplitude relationship analogous to (2.43),
namely

91be = 364by, —492b, . (2.44)
Note too from (2.11) that

f=lim fy=Q+yr/yu)ce—2cm+cg/2. (2.45)
N—>o0

Let us conclude by discussing briefly the behaviour of “effective expo-
nents”. Given a function f(N), let us define A (N) by fitting locally to
the Ansatz f(N)=a+b/N*: this gives

dlog f'(N) {

Aef(N) = — 2.46
eff (V) dlogN ( )
Applying this to f(N)=ag+ai; /N> +a>/N*2, we obtain
A2N—A1+ AZN—AZ
Aer(N) = 221 2 (2.47)

Al AIN=A1 4 ay Ay N—D2°

Thus, if a; and a> have the same sign, the “effective” exponent Agg(N)
lies between A; and A; for all N, and decreases monotonically to A
as N — oo. (This is the behaviour one would expect intuitively for an
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“effective exponent”.) By contrast, if a; and a, have opposite signs, then
Acr(N) starts above A, for small N, increases monotonically and reaches
+o00 at some finite value of N; it then jumps to —oo, after which it contin-
ues to increase monotonically, tending asymptotically to Ay from below as
N — o0. Thus, the qualitative behaviour of the effective exponents depends
crucially on the sign (and magnitude) of a;/ap, which can vary from one
observable to another. We shall see this phenomenon quite clearly in the
two-dimensional SAW.

3. SERIES ANALYSIS
3.1. Summary of Our Data

We have previously reported enumerations of square-lattice SAWs up
to 29 steps for cy, (R2)w, (Ré) v and (R2) x> and of triangular-lattice
SAWs up to 22 steps for ¢y and (REZ)N(“) and up to 19 steps for (Ré)N and
(ern) ~. Analysis of these series can be found in refs. 63, 64. We have also
previously presented the square-lattice SAW counts ¢y up to 51 steps!” and
the square-lattice polygon counts pay up to 90 steps.!”) Analysis of these
SAW series!!7-19) provided good evidence that the non-analytic correction-
to-scaling exponent is exactly A; =3/2 as predicted by Nienhuis,*> and
that there is also the expected analytic term of leading order 1/N (as well as
1/N%,1/N3,...). For SAPs we found compelling evidence for purely ana-
lytic correction-to-scaling terms. We have thus far found no numerical evi-
dence of a second non-analytic correction-to-scaling exponent A,, although
it is reasonable to expect that one exists.

In the present paper, we have extended the previous work by enumer-
ating all SAWs on the square lattice up to 59 steps, and on the triangular
lattice up to 40 steps, using refinements of the finite-lattice method (FLM)
due to Rogers (unpublished) and Jensen.> The results for cy, (Rg) N
(Ré) y and (ern) ~ are collected in Tables I and II.

For square-lattice SAPs, the counts are now known up to 110
steps, (9 and the radii of gyration up to 100 steps.®® For triangular-lattice
SAPs, the counts py were previously known up to N =35;©7 in as-yet-
unpublished work, one of us (ANR) has extended them up to N =40,(®)
while even more recently another of us (IJ) has extended the series to N =
60 steps.(6?)

As the FLM does not enable us to record the full end-point distribu-
tion, nor higher moments (at least not with the amount of memory avail-
able to us), we also programmed a conventional backtracking algorithm
and recorded the full end-point distribution ¢y (x) for N <32 (square lat-
tice) and for N <22 (triangular lattice). As a result, we are able to study



1053

Corrections-to-Scaling Exponents

1ST6CE9LT61CE0]T 0LCEST956990006 00T10T¥ELOSELS 0CTC98LTIL6TE 9T
€8V T SHITISE 1L8ETI6ISTYISOT 1€8TT1L90¥S80¢€ 8067SE18YECT ST
CLLLTI8TTBS8SI1 Y8YLI¥8¥06¥7196 0C186S6SL9801 9TELO6EIVIOY 144
886109+1€8001 889PSHI8ISSIITE STLTEETIIISE CI8ET999CLI €C
618€TLIE]EVE] 8YECIPLO661001 OPLOLLISSEET 787095719 (44
601069¢vE8YY S6ELSYETTTOTE €80¥0€TLS9Y 82090880tC 1T
YLICTLYLS8Y T 98909C9L0%101 P8S8CTLSLION ¥91L69L68 0C
YOLETTIV68Y 9ETTTOTYLYIE 65808S£6SS 0C99115¢€ 61
LTSLYYE66ST 0181598066 YCETEOY o1 CELSSITCI 81
$8000C88I1¢S LEISLYITSOE 18LSS88S9 9L999%9% LT
96C€£809991 889L8YYLT6 78695 1¥CT CEESYTLI 91
00TS910¢S CL8Y9098LT T10EVPLSL 965919 ST
LSTOSS991 0vC679TC8 00S86£ST \ 4227554 14!
6v610L1S §S08EE6ET 61¢ITP8 005188 el
PSIE8LST 0128089 CIILLLT (4% 743 Cl
PVIvLYy 08568681 1CLT06 c620Cl 1T
60816¢1 P619¢1S YCE68T 001+ 0l
SLE6OE SeSIsel LY116 89791 6
96L011 0810v¢ 0CI8¢C 916S 8
896¢C 0918 LYY8 CLIT L
LESL 80681 14374 08L 9
1081 L88E 6L9 8¢ S
06€ <L 9L1 001 14
YL 911 1874 9¢ €
I 14! 8 Cl [4
1 1 1 14 1
N N1+ )T NGy No(1+N) E N(2g)No¥ No N
asie| aienbs ay} uo sp\yS 104 elep uoljesawnud joex3y | ajqerL



Caracciolo et al.

1054

SOPLOSEOPOTITOSLILOTS060SLT  ST99SHEGITHLEG0TITSES6ISSLOS  STHOEOVE6TESESGYOSLYLITSL  S06T91081TOVTIC8991TI66 €S
98Y8S9V160VLILILEIT6STE6ET b16989L11S6LLEOS6TSYSS06S801  OTHOTSYSEESISHTIGLSSOVSLT — 9TTOL6LYSIESTIOONOSTELE TS
8LLS9TLISOTILETSST168EL6TT TL19E66VLSLTI0968LLIIEISTSE TELVOTTT0000¥991SHHILLOOT  bh8PPO0S0909086S IH6SOVT IS
T¥8EEESLOLTLTITISOLLSLETS 06STL96S6TE0LELTYLLYESSYE 9SE9VSIVSSLSLEIESTOLYSIE PY990TLESYTLIIIV6LT6TS 0s
110SS8¥S061S68696780156T 1$8LT8E0696LS0VEYSSSLSITLY $65T19980160081L90VE9YE | 9E8S¥8T9089709PSSIE661 &b
H069%06LSPI9E6TELOS6LSSOT Y8EL6LTIT6T99LYOVLOSLELSOT 2095 L¥0861095 112L9S 161 80T8Y6L86S6ELYS6ET0SL 8t
TS6LISEVETE689STHILEELLE 00YL9691¥86711105998LE0SS LOLYL6TTSSLEV6606LEEEL TL609STIS00STSSLIYTST Ly
6L9SEITSILOOS LY THTSIOVET 0TLESES666V000S9L 1€THSTOT 8Y66E 1T88L96TLIISYLESY TEEETSITSEGITILSSTIOT o
SE8T08H0860SSLLE19L00SY THOY00T 180VT8S61T9S6SLOL €6L0LLT6300S09S960TSET 0VIST16029986V0LT666S St
06ELEOLYSELLELLT6LLSOLT 998096LTH09£00665 19TSVT 9959097690020 87998 88SST9108E9TEITHOS T b
T0L60SOV16810¥61TLYLO9 8TH199€606£665 18765 1LSS LOT9TE61E9TIE6TETOSTE T1960TS91L50L99659S £
L666ES0T69SPI0SSE6SS TT 8€L8T0S6SLETSSSEREVEL6T 88LS6V08SHYTOVSOTHY T 8TS1LTTLSSETOLSLTIT w
60 ISTESYELLOSOTI THIL STTTY616SL60102T0996201 S06£T996EHTITT89IS T 0PESST66STE0TSE008 1%
9LTL89S61T090TH6TE0LT 08660€ 101S9TITI995955€ 8YOVTH6SI60TLTISHOST 89THLYSYTEYTS6LO0E of
SPLFOLIT6TLEVOISSYSE 967917S69ST6V199019CC L8SLOYISTITITTTS IS TE6£58L8SILITOIET 6¢
12975 88T6E68YSLIIIEE 9€89TSEEOTTILOSLISITY P0S6LIESTHIVTETOLOI PP001T8SLOSLISYTH 8¢
€TLSEIPI6ISHSLEOVSTI ELEV606E T8EIE0TTO9HYT €SP6099LESTE0ITIL TLS0L1STTSS896S 1 L€
0S891991SEL105009 11 01STITTOTISY69TESH6Y 0TL68068S T8558995C TIPHTI66Y07LS66S 9¢
STTILLIESTSLOTISS T 8068Y1LLT69LS1STLSIT LL6VSSESY6YLIOVT6 PY86SLLLOVESTSTT s¢
€€5T0ELTSLEG6SLE0S TTSLOLST6VIYS989ELS 9$SH8TE9L9SILSTEE 80L8YIVLOGLTSHS ve
€1LVTLOSLGTSLISLL 12L601996V08 1HSH6I 6TIVTIESITEONHOT T 9L0LITSESIOVLIE €€
8T658TEPETI0HSSTI T€96£8080607SL1LS9 09T TIEPSLOVSTSTY 0T0ET6L66VE061 T 43
PPEISELSSTTR0SYIT TSSTOS98PHEOSEETTT 66TTS6V888E8TES T 9560£9918€L9tY 3
6LSS0TOYSOTITEYL T1S€898T650TITTL 96£50S9S TEEILYS SPESE6LS6TPLIT o€
L9S0STOSLS6VIST $89¥89€8T66YHOSHT 10€LTVETISITS61 TEE6TTI6E6LTY 62
PE9666LIVLETSS 9TSTSET006288HTS 968S¥LS99LLY69 PYTTISSSLETSET 8¢
9808LTEES0SETOE 0TTHLTIELSOSTELT L99STT1190599+C 8TOI6VLIEISS Lz

N No(1+ N) NG No (14 N) F N(2y)Not No N

(Penunuog) ‘| a|qeL



1055

Corrections-to-Scaling Exponents

VIS8L6899T16ECS8LY8CYTYSB0TT8
[¥CC060LLYTEYI6ELO0V6SLLTOE6T
L80BOLELYETBLILOOSIBEGS6BLSOT
YOS8YYCLOTS TTY888SYESYESSI8E
80SYSOCIEOTYBILE9Y998601SLET
€88ECLTIIETI6ETS6617E90L0S 67

9ST0TE8LES6LOTIYOIIPSLSITI69SST
8E1E6VIIY61L61SS6TOTOLTILSTESS
[LE90EYT66V09ISLISEETLLEVYEIO]
OPE9EEVEYTYTSYILITLBLOTO66S69
CSI8YS6118188C86SS66CLITLYIVLT
899LT09V8YVLBOLYCYIVYSTISSILY

6¥09C699LETIILIYSTIINISIHT0E
9EY8ECYEI081890LISTTT68STET T
669S08TTECOTTLI8SY8SSOLOS Y
0CLO9TT8EOV8ETEYLTO0TTINCST
L9906L61609CS8LI6SB666SS
91ST80L8Y6990LTELTI066CSOT

961CL966YYT806SYEITOLTYIVE
YPOSST8LLTLSOTSTYIY88ESOET
0%1965098000€1€SLO9Y 106V
00S0€8ESTYLY68LIST68SESSI
Y09¥L9¥S618SLLTOOLTOS869
80L1708681705091C86C060£9C

68
8¢
LS
9¢
59
125

N No(T+ ) ¥

NN (14N |

N(y)No¥

No

N

(Penunuoy)

‘I °1qeL



Caracciolo et al.

1056

L88080T9SLLLITI008I €6L9€99CTLI6LYTTLIST LESLTLYO6TO9LIYTSST PEOLYYEYSOTI0SE0T Y4
CTEOVTLICT668E0SL]E CISSTISOTI9P8CSTrOCTYIE PIEEE900SITILIPSE TP199€€L880909%C 144
9L81CI8TYI09700E8 PrE60SETTEIPPI0LY9 §960995TSESSTO6L 20¥89C606££978S €C
LOLOVELTYSSSO89LI 96TEREYSO1E88CECET OPELIOSTOL8ELSLT 9P0ESOTLOSTS8ET (44
1€£0T8S06011CoVLE [8L9S18¥17085989C 16CH007L8C8E68E PE6SSSTOTYOCE IC
86¥0¥SLITLT]6SL 968901S9IESTTIPS 8T6£6597C0C6S8 8L90T96EYCI8L 0T
CCLLYLISYESTSII 968570965L010801 LETYS98E]6L881 PLEILETETISSIT 61
LL600LSLIVEEYE 09%LTILL8OSIEIT 06S8LCY06LTIY P6S6€L96C8EY 81
SIPS8LOIYYLOL SP1€09C9CI1081Y €C9¥L06£9L68 T88L96€£L9¢01 L1
SLI8YCSOVPiy1 YCTLLO69881808 Y960LCr 10761 TTe0eeL6vYT 91
T999€810616C CPEI8TILSIVST 10S989L+91+ C8SSIOLISLS SI
TT88LEOTES]S 8861L869L68T TTrE960L88 0SCTI6LT9¢E] 14!
LSTIE8YOVT T 1120€1€ESES L8EEILTLST 9891€L0OCE €l
0V6vLITETT ¥81807L696 0vC0IEI6E 90TSSESL Cl
868€€9STY $099S0LILI LS8ESLOY 8€6899L1 Il
198C6¥6L 99€€6656C 890791 99I1¢ely (0
EC8LLYYI l6vccvor 6£L88C¢E YE1196 6
991LSST 9G16€6L 80%19 0€1vTC 8
S0LYEY OvLSICI 128¢CCl 88I¢ L
65€0L Y6I1SLI ¥C9TC 9611 9
L9901 S0EET LL6E 0€LT S
9LY1 8LLT ¥S9 819 14
SLI [4:14 L6 8¢l €
L1 (44 Cl 0¢ 4
I I I 9 1
N(T)No(1 4+ N) 3 NN (14 N)? N(2y) o3 No N
aa;je| Jejnbuen) syl uo S\\YS 40} elep uoneISWNUSD JoexT || S|qeL



1057

Corrections-to-Scaling Exponents

C8LLTI99TOTTIVIILECILTIOLISYYCT  CISLILSTOTOLTSTI8ILO6YSE06TOEIT  9LLIOFOTISTICISSTLIOSSYLIE69  9CTESIOISITHSLSTLITIO6019CT  OF
VIELLLLIIY668SIVSTITIVERIC6LT  TOOOLITEY6TT6CS0LIEY68YITT6SE [PST€8069LSLOSTTO6819V6Y6ST  06€LTETOT]S9EE99998LIT101S 6¢
LOEOYCIT99€66S11689C08965C9 T68E1900L69LT00066V IFIST8YSL OVCYLEYO688TLLTS8LLTESSI9E 069LLSOVYLLY61999CILI06TT 8¢
19080€0TTT0ELO6SYEILLST666E] SLO9T18898198ST06910VEI80ILIT 168CHSYOET8ISHOEYTYELETYS T8IY60L1EYTTLO90T0Y8080E LE
I ITEEIPO8Y8TECITISTTIE 8IY6L£E9S8TICTSLTTISLOCYOILE YOI eCSSO686176L1ELSTO] 986580C06CEI8YLSLOISSEL 9¢
991TLT6SE]LILIS]ITOLO68S69 POTILLEOSHO6EER68091€CIE908 [11669S€ETHICEYSTSTY ST 06LLEIT6VISLSELTTOSSSLI Se
LTI9LYTICELOSLETEISLSYIPS T 9LLBTLEY6E06CTO68TO6LLOTYLI 919T££06¥76C00996L8ST6001 PLEBELOLISOSTTLINOSS 1Y 143
S6116£9TLO6TI6118T0S8THE STEIVLIYERET8OVIP6CLISSLE SOE618YYILITI8YTYLIPEOET 0LESLOTO69LTSLS809T666 £€e
090LYTOCY6LOT TH88LOTSSL C0ETSO6T08EBLLOSTE6SSI08 CLLO618S00S0Y917695 81 CS 8SSYI991CST166STE0L8ET [43
¥L069+080€8€8€19T9TTLI T 7€60£086179800+CSLOLO9TLI S19€88717S090€068€8E6T 1T T8TS6189LY8E]LETI|IS I¢
1LS9806LY0ESIP0LIBLLIE L8TS686L9898650€T86L9E 8LSO6T16LSTO8TYTEIVOILT VLYLO0VYI8SSTE00VSE 0¢
$66080S19T8¥£95971908 EPOLTOTOT96F1HTOESET8L €9CTS986ILOTLTSSTVI9 0LITL6EITLSTIT8STCE 6C
969T665S08YTEILO6STILT 8LILYYILLO60SLTITICITSIT CISO6LLITOVISTI9988ET YLET610VLY68ET8IL 8¢
9T1E€6L8TOTLOLSLO06ESE 89L9Y69LLTITISYTTLLYE €CTITYISOLTOYLTETE 8GCLESSSIOITS88TSI LT
SOET99ELLILYOTO0EES 0961891SST90L9€9T8TL CrC9SYLS878800S0L 996 L19VVIT81SEY 9T

N(EIINO(T+ N) D NZgYNo (14 N)? N(2)No9 No N

(penunuoy) - ajqer



1058 Caracciolo et al.

arbitrary moments. We refrain here from inundating the reader with the
complete tables of cy(x); they are available on www.ms.unimelb.edu.au/
~iwan. However, we do list here most of those series that we subsequently
analyse. For the square lattice, we give in Table III the rotationally invariant
moments (r*)y, (r®n and (r®)y, and in Table IV the corresponding non-
rotationally-invariant moments (r*cos46)y, (r®cos46)y and (r8 cos46)y.
For the triangular lattice, we give in Table V the rotationally invariant

Table lll. Exact enumeration data for SAWs on the square lattice

N Fenir)n Jen (o Fen(r®)n

1 1 1 1
2 24 80 288
3 233 1481 10313
4 1552 15584 171712
5 8261 118741 1876421
6 40128 761824 15997248
7 174687 4216895 113009823
8 711744 21139264 699292800
9 2756691 98246971 3911019843
10 10258032 430155712 20197992960
11 36953225 1794576465 97801373081
12 129595552 7194227712 449049597184
13 444358551 27891276903 1971835847895
14 1494601312 105092615072 8336039677888
15 4944384005 386372087101 34107295967573
16 16121969312 1390424839040 135635987698688
17 51903980173 4910490964373 526075527334141
18 165229382704 17055786755328 1995781800318592
19 520720306083 58367380590987 7423576318235379
20 1626289219696 197097871552608 27128806075092160
21 5037880731363 657614956490835 97570424122840995
22 15491105783776 2170327643009376 345877992391828288
23 47313566966717 7091919679833573 1210056084152236397
24 143616941038800 22964364302956192 4182680502669028416
25 433471181567175 73742760159367607 14298788347356195303
26 1301492251611088 234986541658461504 48385725874370354944
27 3888842767461723 743493757302422163 162197418768856363467
28 11567743361677920 2336936884325400320 538986352207098913536
29 34265929488742837 7300504880342236965 1776583932652252100533
30 101107717070386128 22676475755899170368 5811758654106692557056
31 297251719690114411 70061223151862034731  18878148082088838145579
32 870928677714199072  215380608263460514688  60916738136365328424448

Rotationally invariant moments.
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Table IV. Exact enumeration data for SAWs on the square lattice

1059

N %CN<Y4COS40>N %cN(rscos40>N %cN(rgcos46)N

1 1 1 1
2 8 48 224
3 41 521 5513
4 176 3616 64832
5 517 18581 515461
6 2464 96672 3460288
7 8543 424767 19559327
8 28672 1744320 99520384
9 93715 6804987 467838211
10 300016 25497024 2067530752
11 943881 92462801 8694947865
12 2927136 326371072 35106653952
13 8966103 1126120359 136996603671
14 27176192 3810903520 519344946752
15 81614149 12681966461 1920357610645
16 243136160 41589494144 6948572721152
17 719161805 134640733141 24668510505533
18 2113740144 430916393344 86113474737024
19 6177297699 1365089628939 296122738362483
20 17960659728 4284776312224 1004647110417216
21 51978553251 13337579454483 3367181961982563
22 149793700032 41203857605920 11161461862577856
23 430013901309 126414733312805 36627023206822344
24 1230085625008 385396000445280 119090886021960640
25 3507275950151 1168118922135351 383951817561778304
26 9970080369360 3521536905190720 1228239234255697152
27 28262765992155 10563701297658387 3900781003385081163
28 79911109071584 31542297194620416 12305781139629052160
29 225398486017269 93778343662150501 38579685692175173877
30 634334283147728 277695329500224576 120249249844158963968
31 1781434024153067 819226661598869419 372773226138821611691
32 4993035148467488 2408303159048790400 1149726544611189212672

Non-rotationally-invariant moments.

moments (r4)N, (r

6)

rotationally invariant moments (r®cos66)y and (r8cos66)y.

3.2. Method of Analysis

~ and (r)y, and in Table VI the corresponding non-

In this subsection we explain in detail the method we used to ana-
lyse the data, the results of which are reported in subsequent subsections.
For the triangular lattice, we expect the series coefficients of any generic
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Table V. Exact enumeration data for SAWs on the triangular lattice
N ten(rt)y ten(r®y ten(rd)y
1 1 1 1
2 36 120 420
3 529 3337 22993
4 5454 53358 579918
5 46169 633185 9725849
6 344428 6221884 126456796
7 2352769 53647549 1380311377
8 15060090 420194610 13256099610
9 91701871 3057404227 115436446639
10 536695548 20985811596 930424151244
11 3041620465 137386509145 7043622904369
12 16784388968 864860517248 50628426215432
13 90564392107 5267777416675 348381660817291
14 479388030946 31195330864090 2309752803978322
15 2495911050345 180302936975925 14829889785198921
16 12808562012852 1020273312831596 92588968138883348
17 64901247920059 5666785971562159 564018088195524619
18 325170745810666 30958613694252346 3361656410695492858
19 1612871078099977 166655904211475269 19649810153900928217
20 7927964773508104 885333404431705216 112867935343523712424
21 38652473796950531 4647266177110051355 638156051853903239891
22 187056802703356296  24130876287242419704  3556820174217345377400

Rotationally invariant moments.

quantity, such as the SAW generating function, to have an asymptotic
expansion of the form

k
N 77y —1 ai
M/ N a0+z NA,‘ ’

i=l

3.1)

where u is the connective constant and y is the critical exponent. Like-
wise, we expect the square-lattice series coefficients to have an asymptotic
expansion of the form

k m
N -1 Z ai N ya—2 bi
uNY (a0+ 2 m + (—pu)" N* bo + E 1 W , 3.2)
1= 1=

where « is the critical exponent occurring in the polygon generating func-
tion. Similar expansions hold for metric quantities, and involve also the
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Table VI. Exact enumeration data for SAWs on the triangular lattice

N %CN<I‘6COS60>N %CN<I'8COS66>N
1 1 1
2 12 96
3 97 1609
4 654 17454
5 3977 151649
6 22684 1149148
7 123721 7935829
8 652842 51236610
9 3357439 314319571
10 16914348 1852261068
11 83777857 10566164665
12 409089560 58677117008
13 1973505067 318573263587
14 9421326322 1696583222746
15 44567944521 8885936605365
16 209144745044 45868003547852
17 974497840243 233746526628199
18 4511869867210 1177691322037546
19 20770914530257 5873419831448317
20 95130303643048 29024633960838784
21 433664585252891 142245181072370291
22 1968525488778840 691879404495232056

Non-rotationally-invariant moments.

critical exponent v. Since the exact values y =43/32, «=1/2 and v=3/4
are well established, we shall use them throughout this paper.

Given the calculated terms of the series up to some order Npux, We
proceed as follows: First we decide how many correction terms {a;} and
{b;} we wish to include (i.e., we fix the numbers k and m); then we make
some assumption for the values of u, A; and A;’*F; finally, we fit the data
to (3.1) or (3.2) by taking (k+m + 2)-tuples of successive values of N and
solving for {a;} and {b;}. This can be done by solving a system of linear
equations.

By using (k +m + 2)-tuples at steadily larger values of N, many esti-
mates for the {a;} and {b;} are found. If the different estimates seem stable
as N grows, we presume that they provide an acceptably accurate estimate
of the actual asymptotic coefficients.

A noteworthy feature of the method is that, if a blatantly-too-low
correction-to-scaling exponent is given as input (for example, specifying
Ay = 1/2 for the two-dimensional SAW), the sequence of amplitude
estimates for the term corresponding to that exponent will converge
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rapidly to zero, giving a very strong signal that the exponent in question is
absent. (Of course, if such a term were to occur with an amplitude several
orders of magnitude smaller than the amplitudes of the other terms, one
could be fooled into thinking such a term is absent. Our analysis assumes
the absence of such pathologies.)

Another point to bear in mind is that even if one knows the precise
asymptotic form, with a limited number of series coefficients one can fit
only to a small number of asymptotic terms (i.e., k and m cannot be taken
too large). Beyond a certain number of terms in the asymptotic form, the
quality of the fit visibly deteriorates. The more series coefficients are avail-
able, the more terms can be included in the Ansatz (provided that suffi-
cient numerical precision is retained during the analysis).

A universally observed feature of the method is that the apparent
accuracy of the amplitude estimates decreases rapidly as we move to
higher-order terms in the asymptotic expansions. That is to say, the appar-
ent accuracy of the estimate of amplitude a;11 is significantly less than
that of a;. Moreover, adding further terms in the assumed asymptotic
form (i.e., increasing k and m) improves convergence of the low-order
amplitudes a; provided that k+m does not get too large, but after a cer-
tain point actually slows the convergence. In the case at hand, allowing
more than 2-5 terms (these being the values of K+ 1 and m + 1 sepa-
rately) in the assumed asymptotic form led to a deteriorating (i.e., less
stable) fit.

As the series data at very small N are probably not reflective of
asymptotic behaviour, and we have here the luxury of access to many
terms (i.e., quite large Nmax), the first 19 —k —m terms of the series will
not be used in any of our analyses here.

Our analysis thus comprises two phases. In the first phase, we deter-
mine the correct connective constant u and the correct exponents A; and
AIAF for the asymptotic expansion, as just described. In the second phase,
we determine how many terms in the asymptotic expansion we can reli-
ably use. We now describe our procedure for the second phase of the
analysis.

We begin by fitting for only one correction coefficient, a;. Then
we add further asymptotic terms until the estimates obtained do not
appear to be converging as N — oo to a value that is consistent
with the previous estimates given by fits with one fewer asymptotic
term. We define “consistent” by the requirement that estimates of all
included asymptotic coefficients be well-converged and of the same sign
and within a factor F =2.4 of the previous estimates. More specifi-
cally, we invoke this requirement as follows: setting k = K gives esti-
mates of ay, ... ,ag; repeating the analysis with k = K 4 1 yields estimates
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of ap,...,ag+1. We require that the coefficients ag, ... ,ax from the two
fits agree in sign and in magnitude within a factor of F; otherwise, we
reject the fit with k=K +1 and stop at k=K. Note that the choice of the
value of F is somewhat arbitrary. Realistically, one can reasonably make
any choice in the range 1.5 < F <3, the lower value being more conser-
vative. We chose a value in this range that included most data sets with
small values of ¥ and m, and excluded those with higher values.

Please note that the convergence (as N grows) of each fit is here
judged by traditional intuitive (and thus somewhat subjective) methods.
It would be an interesting project to find a precise definition of “well-
converged” (or its synonym, “stable”) that accords satisfactorily with our
intuitive judgments and gives good results on test series; this would allow
the series analysis to be converted into a precise algorithm. But we do not
purport to carry out such a project here.

For the triangular lattice, this procedure is thus relatively simple to
implement. We compute fits initially with £ =0, incrementing k by 1 until a
non-stable or inconsistent estimate (as defined in the preceding paragraph)
is found; we then revert to the previous group of stable and consistent esti-
mates. The final entries (i.e., those corresponding to the maximum N) in
the largest stable group are taken as our final estimates.

For the square lattice, the procedure is more complicated, as it is not
clear a priori whether terms involving A; or A;A‘F should be added to a
given group. Empirically we have found that groups containing approxi-
mately equal numbers of A; and Af*F terms, or slightly more A; terms,
are more stable than estimates with significantly different values of & and
m. Hence we begin by exploring groups with equal numbers of A; and
AlAF terms, that is with kK =m, adding one coefficient to each group at
every stage. Next we try groups with one more A; term than AlAF terms,
so that k=m + 1; and finally we try groups with two more A; terms, so
that k=m +2. Again, the largest group that provides stable and consistent
estimates is selected. As always, the given estimates are taken from the fits
to the largest available value of N, which is Npax, since these should best
reflect the asymptotic regime.

The estimated error is calculated as the change between the estimate
given by the longest series and the series ten terms shorter, multiplied by a
factor reflective of the expected rate of convergence of the estimates. This
latter factor is determined by assuming that the error in the estimates is
principally given by the first omitted A; or AZAF term. The difference in
the exponents between the term in question and the first omitted term
is then used to predict the value of the estimate on a fit to an infinite
series.
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To illustrate these procedures, we show below the output from fit-
ting the triangular-lattice series for cN(Ré) N Wwith increasing numbers of
correction-to-scaling terms. We make the Ansatz

(N+DP2en (RN /6 ~ uN N12¥/3
x[ag+ai/N +a/N3'* +a3/N*+as /N> +---] 3.3)

and obtain fits as follows:

N ag ap

21 0.01929438 0.08276963
22 0.01932692 0.08208623
23 0.01935556 0.08145624
24 0.01938091 0.08087327
25 0.01940346 0.08033194
26 0.01942363 0.07982768
27 0.01944175 0.07935660
28 0.01945809 0.07891535
29 0.01947289 0.07850104
30 0.01948633 0.07811114
31 0.01949859 0.07774345
32 0.01950980 0.07739603
33 0.01952007 0.07706717
34 0.01952952 0.07675536
35 0.01953823 0.07645924
36 0.01954628 0.07617761
37 0.01955373  0.07590938
38 0.01956064 0.07565359
39 0.01956707 0.07540935
40 0.01957306 0.07517587

N ag ap a»

22 0.01976614 0.05375917 0.08754307
23 0.01976114 0.05408172  0.08654625
24 0.01975680 0.05437453  0.08562049
25 0.01975301 0.05464205 0.08475611
26 0.01974966 0.05488785 0.08394517
27 0.01974669 0.05511490 0.08318096
28 0.01974404 0.05532562  0.08245789
29 0.01974166 0.05552207 0.08177122
30  0.01973951 0.05570593  0.08111693
31  0.01973756 0.05587867 0.08049156
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32
33
34
35
36
37
38
39
40

N
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

N
24
25
26
27
28
29
30
31
32
33
34
35
36
37

0.01973578
0.01973415
0.01973265
0.01973127
0.01972999
0.01972881
0.01972770
0.01972667
0.01972571

ag
0.01970992
0.01971020
0.01971034
0.01971039
0.01971036
0.01971026
0.01971013
0.01970995
0.01970976
0.01970954
0.01970931
0.01970908
0.01970883
0.01970859
0.01970834
0.01970809
0.01970785
0.01970761

ap
0.01971252
0.01971161
0.01971081
0.01971004
0.01970935
0.01970871
0.01970812
0.01970757
0.01970707
0.01970660
0.01970616
0.01970575
0.01970536
0.01970501

0.05604149
0.05619545
0.05634145
0.05648027
0.05661259
0.05673898
0.05685998
0.05697603
0.05708754

ai
0.06084150
0.06080458
0.06078451
0.06077784
0.06078284
0.06079722
0.06081948
0.06084830
0.06088254
0.06092130
0.06096380
0.06100940
0.06105753
0.06110773
0.06115962
0.06121284
0.06126712
0.06132220

ai
0.06028314
0.06048759
0.06067477
0.06086343
0.06103877
0.06120830
0.06137074
0.06152632
0.06167592
0.06181962
0.06195787
0.06209097
0.06221921
0.06234286

0.07989215
0.07931614
0.07876131
0.07822571
0.07770765
0.07720563
0.07671833
0.07624459
0.07578337

az
0.04428770
0.04451851
0.04464682
0.04469036
0.04465705
0.04455931
0.04440510
0.04420187
0.04395605
0.04367303
0.04335757
0.04301375
0.04264515
0.04225488
0.04184568
0.04141995
0.04097980
0.04052709

az
0.04946255
0.04752405
0.04571025
0.04384348
0.04207338
0.04032868
0.03862565
0.03696505
0.03534052
0.03375373
0.03220232
0.03068515
0.02920108
0.02774880

as
0.07428718
0.07388144
0.07365079
0.07357085
0.07363327
0.07382009
0.07412046
0.07452360
0.07501986
0.07560099
0.07625946
0.07698862
0.07778247
0.07863562
0.07954324
0.08050094
0.08150474
0.08255105

as
0.05630611
0.06319720
0.06978710
0.07671271
0.08341263
0.09014499
0.09683963
0.10348538
0.11010004
0.11666979
0.12319772
0.12968223
0.13612229
0.14251786

aq

0.02220967

0.01350151

0.00499021
—0.00414364
—0.01315896
—0.02239437
—0.03175015
—0.04120539
—0.05078048
—0.06045075
—0.07021604
—0.08006943
—0.09000497
—0.10001832
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38 0.01970467 0.06246219  0.02632719  0.14886860 —0.11010477
39 0.01970435 0.06257743  0.02493510  0.15517452  —0.12026033
40 0.01970406 0.06268879  0.02357145 0.16143576 —0.13048133

We observe in these fits the following behaviour: As N increases, the
estimates of the amplitudes a; appear to be converging in each set, until
we reach the set with five asymptotic coefficients (ag, ..., aq). In this lat-
ter fit, we see that the estimate of a4 appears to be diverging. Further, the
estimates of aj, ay and a3 have deteriorating apparent convergence as we
go from a four-term to a five-term fit. By contrast, going from a two-term
to a three-term fit, and from a three-term to a four-term fit, improved the
apparent convergence of the amplitude sequences. Thus we reject the five-
term fit, and base our estimates on the four-term fit.

Finally, the estimated error from a series of length N is taken to be
the appropriately scaled difference between the values obtained from this
series and those obtained from the series of length N —10. This difference
is scaled by a factor dependent on the difference between the exponent in
question and the first omitted exponent. The scaling factor follows from
our assumption that the error is given principally by the first neglected
term, ¢/N2+1 (or similarly with Aﬁil). Hence, if the actual value of the

coefficient in question is ¢; and the two estimates are ai(N ) and ai(N 10 we
expect that
(N)
4 a; c
I\IIAi - NAi + NAk+1 (343.)
dNV-10) . .
i i
= 3.4b
(N—-10)% (N —10)4i + (N — 10)Ak+1 (3.4b)
Simple algebra then yields
(N) __(N=10)
a(N) —a; = — ai al (35)

l () ™ =1

Therefore, a; is estimated by al.(N) with error quoted as

(N)_ (N710) N Ak+1—A,'_
2|a™ \/[(—N_10> 1. (3.6)
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The factor of 2 is included to make our errors more conservative. More
adventurous readers may choose to reduce this factor.

In the above example, the first omitted term is O(N~>/2). The differ-
ence in the estimate of ag from the N =40 series with four asymptotic
coefficients (0.019707611) and that from a N =30 series (0.019709959) is
2.348 x107%. Thus the error is quoted as 2 x 2.348 x 1076/((40/30)%> —
1)=4.5x 107%. Our amplitude estimate is then ag=0.019708 £ 0.000005.
Similarly, a; =0.0613 £0.0018, where the error is given by 2 x 0.0004739/
((40/30)!5 —1). Likewise, a»=0.04+0.02, and a3=0.08+0.1.

3.3. SAW Counts

In this subsection we discuss the analysis of the newly extended series
for SAW counts on the square and triangular lattices. Here we give only
a brief analysis, as fuller details will be published elsewhere,®® along with
a discussion of the series derivation.

Let us begin with the triangular lattice. We first analysed the extended
SAP series using biased differential approximants using the known expo-
nent « =1/2 (see ref. 19 for the method). We obtained

xc=1/pn =0.240917 574 £0.000 000 004, 3.7

which we will use in subsequent analyses.

We also performed a similar analysis using the extended SAW series,
biasing the estimate with the known exponent y =43/32. We obtained the
estimate x, = 1/u = 0.240917579 +0.000000008, in agreement with the
SAP result but less precise.

Using the estimate (3.7) of x., we proceeded as described in Section
3.2 to fit the series coefficients to various asymptotic forms. For triangu-
lar-lattice SAWs, we expect, based on earlier investigations of the corre-
sponding square-lattice series,!”) that

ey ~ uNN"Plag+ a1 /N +ay /NP +a3/N* +as /N> +as/N> +---].
(3.8)
However, as discussed in Section 2.2, renormalization-group theory
predicts an additional “energy-like” term arising from the mixing between

nonlinear scaling fields. For the two-dimensional SAW (o =1/2), incorpo-
rating this term requires that (3.8) be modified to read

env ~ N NY32lag4+ay /N +ay/ N3+ /N3 + a3/ N? + a4 /N> +- -]

(3.9)
[of. (2.26)].
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In our analysis, we tried both the asymptotic forms (3.8) and (3.9).
Since the exponents associated with amplitudes @y and a3 are numerically
close (1.84375 and 2, respectively), we expect that it will be very difficult to
distinguish numerically between the Ansétze (3.8) and (3.9). This is indeed
the case. Under the assumption (3.8), we found that the sequences cor-
responding to the amplitudes are well converged up to k=4 for trian-
gular-lattice SAW and we estimate ag = 1.183966(1), a; =0.5960(4), ap =
—0.274(6), a3 =-0.14(4), and a4 =0.09(10). Our errors are calculated as
described in Section 3.2 and are given, in parentheses, as the uncertainty
in the last quoted digit(s). Under the alternative Ansatz (3.9), we find that
the fit is neither better nor worse. We observed that the sequences of esti-
mates of the corresponding amplitudes @y and a3 appear to be correlated:
they are monotonically increasing in magnitude but are of opposite sign,
the sum ajy+ a3 being almost constant.

To investigate this point further, we constructed a test series, with
known asymptotic behaviour, similar to that in (3.9), namely

dy=N"32[14+1/N+0.7/N*>?+1.25/N*/3 £ 3/N> —4/N> +
5/N3—6/N"1+ 0.5V, (3.10)

The last term is included to incorporate the fact that there are other sin-
gularities in the complex plane, beyond x., which will make an exponen-
tially decaying contribution to the asymptotics. We generated the first 1000
terms of this sequence and analysed them as above, including either a term
N=%/32 or a term N~2 or both. The analyses using either one of these
two terms behaved similarly. The analysis using both terms gave inferior
estimates of the first three amplitudes, and the wrong sign for the ampli-
tude of the N2 term, when N <240. Only beyond this point does the
analysis using both terms give superior estimates of the first three ampli-
tudes, along with the right sign for the N~2 term (the two issues clearly
go together). We conclude that using series of the length available to us
(N <40), it is unfeasible to determine whether a term N—>%/32 is present
or absent.

In conclusion, our analysis is unable to resolve the question of
whether the “energy-like” term N~>%/32 is present or not. Therefore, for
the subsequent analysis of the metric quantities, reported in the next sub-
section, we have assumed for simplicity the absence of this term, and just
assumed the asymptotic form (2.24) with one correction-to-scaling expo-
nent A;=3/2.

On the square lattice, the situation is complicated by the presence of
an “antiferromagnetic” singularity at x = —1/u. From (2.27) ff. we recall
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that the asymptotic form of the coefficients given in (3.8) and (3.9) is mod-
ified by the additional term

(—=DNuNN=32[dy+d\ /N +dr /N> +d3 /N> +--]. (3.11)

Analysing the square-lattice SAW data using as our estimate of x. the pos-
itive real root of

581x% 4+ 7x* —13=0, (3.12)

which is a useful mnemonic for the current best estimate x> =0.143680
62927(1),1) we obtain a very convincing fit with k=3 and m =2, enabling
the following amplitude estimates to be made: ag = 1.1770425(7),a; =
0.5501(2), ar = —0.1402(3) and a3 = —0.12(2) for the “ferromagnetic”
amplitudes, and dy = —0.189848(3), dy = 0.17473(9) and dp = —1.51(1)
for the “antiferromagnetic” amplitudes. This is in close agreement with
the earlier estimates (1.2) based on slightly shorter series; here we have
obtained a slight improvement in the precision of the estimates for the
leading amplitudes ag, dy and d;.

If instead we assume the asymptotic form (3.9) for the “ferromag-
netic” term, we find that estimates of a3 are small (less than 0.03 in mag-
nitude) and tending toward zero. Estimates of a4 are tending toward the
estimate for this term obtained in the absence of the additional term with
amplitude a3. Once again, we are unable to distinguish (3.8) from (3.9).

3.4. Metric Quantities (R2), (R2) and (RZ)

In this subsection we shall analyse the metric quantities (Rg)N, (Ré)N
and (R2)y, any one of which we shall generically denote by (R*)y. As
discussed in Section 2.2 [cf. (2.24)/(2.27)], their asymptotic behaviour is
expected in the first instance to be

(R*)y ~ N¥[ap+a1/N +a/N* +a3/N? +---] (3.13)
for the triangular lattice, and

(Rz)/v ~ Nz"[ao+al/N+az/NAl +a3/N2+---]
+(—1)NNq[b0+b1/NA¢F+b2/N_|_...] (3.14)
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for the square lattice. As mentioned earlier, there is overwhelming numer-
ical evidence®”-17) that the leading exponent 2v equals 3/2 exactly, as pre-
dicted by Coulomb-gas arguments;+> we shall henceforth take this fact
for granted. We also expect A; =3/2, as predicted by Nienhuis® and con-
firmed numerically for the SAW counts. Furthermore, for the square lat-
tice we predict ¢ =—11/32 [cf. (2.33)]. Finally, in Section 2.2 we pointed
out that renormalization-group theory predicts an additional “energy-like”
term in the susceptibility [cf. (3.9)], though alas we were unable to distin-
guish it numerically (see Section 3.3); it is reasonable to guess that there
may be a corresponding term also in the series for the unnormalized sec-
ond moments cy(R%)y. Whether or not the latter term is present, the
existence of an “energy-like” term in ¢y will induce in (R?)y additional
correction-to-scaling terms N—>%/32 N=21/32 = beyond those included
in (3.13)/(3.14).

In addition to the normalized metric quantities (R2)y, we also stud-
ied the corresponding unnormalized quantities ¢y (R?)y, whose expected
asymptotic form is

N (RN ~ uV N by 4 by /N 4+ by /N® +b3/N>+---], (3.15)

with appropriate additional antiferromagnetic terms (2.31) when analysing
the square-lattice data. The latter quantities have the disadvantage that
the analysis depends sensitively on an input estimate of u; but, for loose-
packed lattices and for (Rg) n only, they have the advantage that the effect
of the antiferromagnetic singularity is weaker. To see this, compare (2.30)—
(2.33): the antiferromagnetic contribution in cN(Rg) ~ is relatively weaker
than that in cy; but the antiferromagnetic contribution in (Rg) N 1s domi-
nated by that in cy. Therefore, the antiferromagnetic contribution is rela-
tively weaker in cN(Rg) N than in (Rg) N-

Our method of analysis is based on directly fitting (R*)y and
cn(R*)y to the assumed asymptotic form (3.13)/(3.14)/(3.15), as described
in Section 3.2. The values of the exponents v, ¢, A; and A?F are
assumed, and the appropriate system of linear equations is solved to give
estimates of the amplitudes {a;} and {b;}. In applying the method to met-
ric quantities (see, for example, the table in Section 3.2), the fit to the
leading amplitude is rather stable, that to the first analytic correction
term is moderately stable, while the fit to the amplitude of the assumed
correction-to-scaling term N~3/2 converges less impressively for both the
normalized and unnormalized metric quantities. As already noted, add-
ing further terms in the assumed asymptotic form beyond the first ini-
tially improved convergence, but this improvement is not sustained. That
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is to say, allowing more than between two and five terms in the assumed
asymptotic form led to an apparently deteriorating fit.

3.4.1. Triangular Lattice

With our 40-term triangular-lattice series we found that we could fit
to ag, aj, ap and sometimes a3. For the normalized and unnormalized
metric quantities, the estimate of ap could usually be made to four-digit
precision, while the estimate of a; could be made only to one or two sig-
nificant digits, and the estimate of a, is accurate only to at best one signifi-
cant digit. For a3 the error is comparable to or greater than the estimate.

We have applied this analysis method to the triangular-lattice data,
using a 40-term series for all metric quantities. Because the triangular
lattice is close-packed, there is only one singularity on the circle of con-
vergence, which makes the analysis simpler than for the square lattice
[compare (3.13)-(3.14)].

The tables of estimates for the metric quantities obtained according to
the procedure described in Section 3.2 are shown in Table VII. The results
are:

(R2)y ~ N32[0.71174(32) 4+ 0.95(12)/N —2.6(1.6)/N*/?

+3(7)/N?+0(1/N?)] (3.16)
(R2)n ~ N¥7[0.09989(4) +0.056(16)/N +0.3(2)/N*/?
—0.2(1.0)/N>4+0O(1/N>?)] (3.17)
(R2)n ~ N3/2[0.3133(4)40.24(12)/N—0.2(1.0)/N3/>+O(1/N?)]
(3.18)

These were obtained with k=3, k=3, and k=2 respectively. Unfor-
tunately the uncertainties in the coefficients of the O(1/N3/?) are so great
as to be comparable to (or, in the case of (RZ), larger than) the coeffi-
cient itself. Further, the analysis of the (Ré) N series violates the conver-
gence criterion we have set, in that the coefficient of a; differs by nearly a
factor of 3 in going from a two-term fit (k=1) to a three-term fit (k =2).
We have nevertheless presented results for £k =3. Our justification for this is
twofold. Firstly, the estimate of a; stabilises if we then go to a four-term
fit. Secondly, as we have already seen, the data for the essentially equiv-
alent series (N + l)ch(Réz,) ~/6 supports a four-term fit. For the reader
unconvinced by these arguments, the corresponding analysis with k=0 (a
one-term fit, as would be justified by strict adherence to the convergence
criteria we have set), gives ap=0.106+0.012.
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Table VII. Fit to (R2%) = N32(ag + ayN~1 + aaN—3/2 + a;N-2) for SAWs on the
triangular lattice

N ap ap a as

19 0.712401 0.847374 —1.932382 1.872489
20 0.712338 0.854132 —1.970591 1.933229
21 0.712262 0.862841 —2.021181 2.015860
22 0.712207 0.869360 —2.060036 2.080978
23 0.712154 0.876015 —2.100682 2.150783
24 0.712108 0.882131 —2.138917 2.217997
25 0.712067 0.887809 —2.175211 2.283237
26 0.712030 0.893200 —2.210408 2.347867
27 0.711996 0.898252 —2.244079 2.410972
28 0.711965 0.903032 —2.276568 2.473071
29 0.711937 0.907558 —2.307916 2.534132
30 0.711912 0.911851 —2.338197 2.594197
31 0.711888 0.915933 —2.367500 2.653354
32 0.711867 0.919820 —2.395884 2.711636
33 0.711847 0.923529 —2.423411 2.769094
34 0.711828 0.927073 —2.450135 2.825769
35 0.711811 0.930464 —2.476105 2.881700
36 0.711795 0.933713 —2.501366 2.936922
37 0.711780 0.936831 —2.525957 2.991468
38 0.711766 0.939827 —2.549918 3.045367
39 0.711753 0.942708 —2.573280 3.098647
40 0.711741 0.945482 —2.596077 3.151335
19 0.099915 0.050034 0.335467 —0.323304
20 0.099919 0.049550 0.338206 —0.327657
21 0.099919 0.049529 0.338324 —0.327850
22 0.099920 0.049454 0.338770 —0.328598
23 0.099919 0.049539 0.338252 —0.327708
24 0.099918 0.049696 0.337275 —0.325990
25 0.099917 0.049907 0.335921 —0.323556
26 0.099915 0.050176 0.334165 —0.320333
27 0.099913 0.050482 0.332124 —0.316508
28 0.099911 0.050822 0.329820 —0.312103
29 0.099908 0.051186 0.327296 —0.307186
30 0.099906 0.051570 0.324587 —0.301813
31 0.099904 0.051969 0.321720 —0.296026
32 0.099901 0.052380 0.318722 —0.289869
33 0.099899 0.052799 0.315611 —0.283376
34 0.099897 0.053224 0.312408 —0.276582
35 0.099895 0.053652 0.309126 —0.269516
36 0.099893 0.054083 0.305781 —0.262203
37 0.099891 0.054513 0.302384 —0.254667
38 0.099889 0.054943 0.298944 —0.246930
39 0.099887 0.055372 0.295472 —0.239010

40 0.099885 0.055797 0.291974 —0.230925
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Table VII. (Continued)

N ap ap a az
19 0.313864 0.190168 —0.037972
20 0.313817 0.192786 —0.045478
21 0.313772 0.195399 —0.053166
22 0.313731 0.197964 —0.060906
23 0.313691 0.200488 —0.068707
24 0.313655 0.202966 —0.076542
25 0.313620 0.205394 —0.084387
26 0.313588 0.207772 —0.092232
27 0.313558 0.210098 —0.100063
28 0.313529 0.212373 —0.107868
29 0.313502 0.214597 —0.115640
30 0.313477 0.216769 —0.123371
31 0.313453 0.218892 —0.131055
32 0.313430 0.220965 —0.138688
33 0.313409 0.222990 —0.146266
34 0.313388 0.224969 —0.153785
35 0.313369 0.226902 —0.161244
36 0.313351 0.228791 —0.168639
37 0.313333 0.230637 —0.175971
38 0.313317 0.232441 —0.183237
39 0.313301 0.234205 —0.190437
40 0.313286 0.235930 —0.197570

Data are for (Rez)N at top, then (Ré)N at middle, then (RI%I)N at bottom. The fit for
(R2)y includes only terms up to order (N~%/2).

We can do somewhat better from a similar analysis of the unnormal-
ized metric quantities, using the estimate ©=4.15079723 from (3.7), which
gave

en (R2) N /6 ~ N N¥/32[0.14045(6) +0.256(26) /N — 0.53(32)/ N>/
+0.6(1.6)/N%+O(1/N?)] (3.19)

(N +1D2en (R3)n /6~ u™ N'2/32[0.019708(5)+0.0613(18)/N +0.04(2) /N>
+0.08(10)/N? +O(1/N>/?)] (3.20)

(N4 Den (R2)n /6 ~ uV N°1/32[0.06183(12) +0.136(28)/N
—0.02(24)/ N> + O(1/N?)]. (3.21)
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These estimates were also obtained with k=3, k=3 and k =2,
respectively. From these we can estimate the amplitudes of the metric
quantities by dividing through by the asymptotic form (3.8) for ¢y, and
accounting for the factor of 6 and appropriate factors of (N +1). In this
way we obtain a second set of amplitude estimates,

(R2)n ~ N¥2[0.71176(15) +0.94(7) /N —2.5(8)/N*/2
+3(3)/N?4+0(1/N>/?)] (3.22)

(R3)n ~ N*/2[0.09987(2) +0.061(5)/N +0.23(5)/ N/
—0.5(5)/N?+0O(1/N>/)] (3.23)

(R2)y ~ N32[0.3133(3)+0.22(7)/N-0.03(60)/N3/>+O(1/N?)]. (3.24)

These differ from the directly measured amplitudes only within the quoted
errors for each amplitude, consistent with our claimed errors.

One immediate observation is that for (Rez) y and (Rlzn) ~ the correc-
tion-to-scaling amplitudes corresponding to the 1/N and 1/N3/2 terms are
of opposite sign, while for (Ré) ~ they are of the the same sign (though the
errors associated with the estimates of the amplitude of the 1/N/? term
are rather large). Note too that for both (Rg) ~y and (Ré) ~ the amplitude
of the 1/N3/? term is larger (in magnitude) than the amplitudes of both
the leading term and first analytic correction; for (an), by contrast, the
error in the 1/N3/2? term is too great to comment on the relative size of
this term.

As a consequence, the “effective” exponent Ay based on fitting to
a given range of N behaves differently as a function of N for the differ-
ent observables. For (Ré) N, Aefr lies between 1 and 3/2 for all N, and
decreases monotonically to 1 as N — oo. For (Rg) v and (R2)y, by con-
trast, A starts above 3/2 for very small N, then increases monotoni-
cally, reaching 400 at some finite value of N (here & 15); then it jumps to
—oo, after which it continues to increase monotonically, tending asymp-
totically to 1 as N — oo. These observations are in accordance with
previous studies. Most studies of (Rg)N resulted in estimates for A of
~0.65,8:10.13,14.23) while most studies of (Ré)N resulted in estimates for
A in the range 1.05-1.2.(03.14.20.23) (There have been few previous studies
of (R2)y.) This is clearly a source—indeed, probably the major source—
of the long-standing difficulty in the analysis of these quantities for the
correction-to-scaling term.
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The amplitude ratios A and B [defined as the N — oo limit of (2.8)]
follow immediately from (3.22)—(3.24) as A=0.14031 and B =0.4398, and
from (3.16)—(3.18) as A=0.14033 and B =0.4402.

We also estimated the ratios A and B by direct extrapolation of the
appropriate coefficient quotients, using the following method:“! Given a
sequence {a,} defined for n>1, which is known or assumed to converge
to a limit ao, with corrections of the form a, ~as(l +b/n+---), we
first construct a new sequence {h,} defined by h, =[]),,_;am. Then the
generating function " h,x" ~ (1 — asx)~1*?). We obtain estimates of the
required limit ao, and parameter b by analysing this generating function
by the standard method of differential approximants. (The value of the
parameter b can also be obtained numerically from the amplitude esti-
mates given in (3.22)—(3.24) above.) In this way, we obtain the estimates

A = 0.140296(6) (3.25)
B = 0.439649(9) . (3.26)

3.4.2. Square Lattice

Let us now consider the square-lattice data. We first analysed the
three metric quantities (Rg) N (Ré) v and (R2)y by a method similar to
that leading to (3.16)—(3.18), but including the contribution of the antifer-
romagnetic singularity. We imposed the exponent values v=3/4, A =3/2,

g =-11/32 and A/I*F =1; the justification for these choices has already

been given above. The sequences of amplitude estimates are shown in
Tables VIII-X. In this way, we obtain the following results: As discussed
in Section (3.2), some experimentation was needed to determine the max-
imum values of the parameters m and k in (3.2). The results given below
are given by m =4, k=2 for (Rf)N, by m=2, k=1 for (Ré)N, and by
m=3, k=1 for (RIZH)N. We find

(R2)y ~ N3[0.77124(5) + 1.159(38) /N —3.13(74)/N*/% +-6(6) / N*
—6(24)/N>*40.4(4.0)/N>*+O(1/N"/*)+(= )N N~11/32[0.12451(17)
—0.027(24)/N + O(1/N?)] (3.27)

(R2)n ~ N¥[0.108230(1) +0.1019(1)/N +0.1082(4)/N*/*> = O(1/N?)]
+ (=HN N11/32[0.008364(19) +0.0031(21)/N + O(1/N?)] (3.28)
(R2)n ~ N*2[0.33913(8) 4 0.426(17)/N — 1.1(1.1)/N*/?> +-2(4)/ N*

+O(1/N> )]+ (=DHNN~11/32[0.03652(11)
+0.015(12)/N +O(1/N?)]. (3.29)
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Table IX. Fit (Rg)N = N3’2(ao,g + a g~ + az,gN*3/2) + (—1NN-1/32
(bo,g + b1,g/N) for SAWSs on the square lattice

N ao,g ajg ag bo,g b1

33 0.108213 0.103702 0.100792 0.008333 0.004174
34 0.108216 0.103450 0.101736 0.008370 0.003016
35 0.108218 0.103242 0.102526 0.008339 0.003994
36 0.108220 0.103040 0.103306 0.008369 0.003017
37 0.108221 0.102873 0.103959 0.008345 0.003842
38 0.108223 0.102712 0.104599 0.008368 0.003025
39 0.108224 0.102579 0.105134 0.008349 0.003715
40 0.108225 0.102452 0.105653 0.008367 0.003039
41 0.108226 0.102347 0.106085 0.008352 0.003607
42 0.108227 0.102249 0.106500 0.008366 0.003058
43 0.108228 0.102168 0.106842 0.008355 0.003515
44 0.108228 0.102092 0.107166 0.008365 0.003078
45 0.108229 0.102032 0.107429 0.008357 0.003436
46 0.108229 0.101976 0.107674 0.008365 0.003100
47 0.108230 0.101933 0.107867 0.008359 0.003367
48 0.108230 0.101894 0.108043 0.008364 0.003122
49 0.108230 0.101865 0.108175 0.008360 0.003307
50 0.108230 0.101840 0.108290 0.008363 0.003145
51 0.108230 0.101823 0.108367 0.008361 0.003254
52 0.108230 0.101810 0.108428 0.008363 0.003166
53 0.108230 0.101804 0.108456 0.008362 0.003207
54 0.108230 0.101801 0.108470 0.008363 0.003187
55 0.108230 0.101804 0.108455 0.008363 0.003165
56 0.108230 0.101810 0.108427 0.008362 0.003207
57 0.108230 0.101821 0.108373 0.008364 0.003128
58 0.108230 0.101834 0.108307 0.008362 0.003226
59 0.108230 0.101852 0.108219 0.008364 0.003094

A similar analysis of the unnormalized quantities, using the estimate
u = 2.63815853034174086843 from (3.12), was made. The results below
are given by m =4, k=2 for the first two quantities, and m =3, k=1
for the third. For the first two quantities we have not given our esti-
mate of a4 as the associated error is significantly bigger than the estimate.

We find

en(R2) N /4 ~ N¥/32[0.226945(14) +0.4471(11)/N —0.95(22)/N*/?
+2(2)/N?+0O(1/NH)]+ (=N N=3/2[0.019098(1)

10.0415(41)/N —0.08(45) /N2 +O(1/N%)]

(3.30)
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Table X. Fit (R2)y = N°2(ag, + a1, N + ap,N3?2 4+ a3,N2?)
+(=1NNVN-M32(py .+ by .,/ N) for SAWSs on the square lattice

N ao,m at,m az.m as.m bO,m bl.m

33 0.339223 0.401114 —0.849196 1.011789 0.036366 0.020608
34 0.339252 0.395837 —0.810037 0.930082 0.036379 0.020222
35 0.339210 0.403819 —0.870217 1.057665 0.036397 0.019642
36 0.339233 0.399343 —0.835945 0.983880 0.036407 0.019318
37 0.339198 0.406364 —0.890517 1.103143 0.036422 0.018812
38 0.339216 0.402541 —0.860364 1.036281 0.036430 0.018538
39 0.339188 0.408723 —0.909807 1.147474 0.036442 0.018096
40 0.339202 0.405479 —0.883503 1.087501 0.036448 0.017866
41 0.339178 0.410928 —0.928281 1.190967 0.036458 0.017480
42 0.339190 0.408177 —0.905379 1.137357 0.036463 0.017286
43 0.339170 0.413005 —0.946085 1.233861 0.036472 0.016947
44 0.339180 0.410665 —0.926109 1.185914 0.036476 0.016783
45 0.339163 0.414963 —0.963242 1.276125 0.036483 0.016483
46 0.339170 0.412973 —0.945843 1.233355 0.036486 0.016345
47 0.339156 0.416811 —0.979781 1.317746 0.036492 0.016080
48 0.339162 0.415122 —0.964678 1.279766 0.036495 0.015963
49 0.339150 0.418559 —0.995753 1.358778 0.036500 0.015727
50 0.339155 0.417130 —0.982689 1.325201 0.036502 0.015629
51 0.339144 0.420217 —1.011200 1.399256 0.036506 0.015418
52 0.339148 0.419011 —0.999949 1.369730 0.036508 0.015336
53 0.339139 0.421791 —1.026155 1.439200 0.036512 0.015148
54 0.339142 0.420779 —1.016525 1.413417 0.036513 0.015079
55 0.339134 0.423289 —1.040647 1.478633 0.036516 0.014910
56 0.339137 0.422446 —1.032471 1.456316 0.036517 0.014854
57 0.339130 0.424716 —1.054707 1.517578 0.036520 0.014702
58 0.339132 0.424021 —1.047836 1.498474 0.036521 0.014655
59 0.339126 0.426078 —1.068359 1.556056 0.036523 0.014518

en(Rg)n ~ N*/3%[0.127388(31) 4 0.181(17)/N +0.10(26) /N
+0.1(1.0)/N? +O(1/N>*)]+ (= 1)¥[-0.010688(15)
40.0047(17)/N —0.20(5)/N* 4+ O(1/N>)]

(3.31)

en(R2) N ~ N¥/32[0.39917(11) +0.686(44) /N — 1.3(6)/N>/*> +2(2)/N*?

+O(1/N>?)]+ (=1HN[—-0.021383(45)
+0.028(5)/N +O(1/N?)].

(3.32)

From these we can estimate the amplitudes of the normalized metric quan-
tities by dividing through by the asymptotic form (2.30) for cy. In this
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way we obtain a second set of amplitude estimates,

(R2)y ~ N32[0.77124(5) + 1.1593(38) /N — 3.13(75) /N> +6(8) / N
+O(1/N)+ (=DHN N~11732[0.12439(4)
—0.0144(9)/N +O(1/N?)] (3.33)

(Rg)n ~ N*[0.108227(50) +0.103(17)/N +0.098(160)/N*/> = O(1/N?)]
+ (=DNN~11732[0.008376(20) + 0.0006(30) /N +O(1/N?)] (3.34)

(R2)n ~ N*2[0.33913(8) +0.424(19) /N — 1(1)/N*> + O(1/N?)]
+ (=N N11732[0.03654(7) +0.027(8)/N +O(1/N?)].  (3.35)

These differ from the directly analysed amplitudes only in the last
quoted digits for all but the least significant amplitudes, and are consistent
with our quoted errors in all cases. In the notation of (2.34), from (3.33)
we have aj/dj =6.200(3), while from the amplitudes quoted below (3.12)
we have ag/dy=6.1999(1), in complete agreement.

The amplitude ratios A and B follow immediately from (3.27)—(3.29)
as A=0.14033 and B=0.43971. From (3.33)—(3.35) we obtain the almost
identical values, A =0.14033 and B =0.43972.

We also analysed these amplitude ratios directly, using the same
method as discussed above for the analysis of the triangular-lattice data.
We obtained

A = 0.140299(6) (3.36)
B = 0.439647(6) . (3.37)

Comparison with the corresponding estimates (3.25)—(3.26) for the tri-
angular lattice is entirely consistent with the belief that these ratios are
lattice-independent. >

These amplitude ratios are also consistent with the CSCPS relation
(2.10): using our best estimates (3.36)—(3.37), we find F=limy_ o0 Fn =
—0.000024 4+ 0.000025 for the square lattice; and using (3.25)—(3.26), we
find F =limy_ o Fxy = —0.000036 + 0.000036 for the triangular lattice.
A direct analysis of the sequence {Fy} was also undertaken, but that
sequence was found difficult to extrapolate; and our estimate of the limit,
while entirely consistent with zero, was a factor of 10 less precise than the
one just quoted.

If it is in fact true (as certainly seems to be the case) that Fy — 0
as N — oo, then it is of interest to investigate the rate at which Fy — 0.
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If Fy x N7%, then fy EFN<R3>N o N3/2=8_ For both square and triangu-
lar lattices, we find that § =3/2, i.e. that fy approaches a nonzero con-
stant f=limy_, fy as N — oco. This behaviour was initially surprising
to us, because it implies that there is no analytic correction-to-scaling term
I/N in fu, even though such terms are manifestly present in each of the
three individual metric quantities (R%). Moreover, this remarkable result
appears to hold for both lattices.'” However, we were subsequently able to
provide a renormalization-group argument for this cancellation (see Sec-
tion 2.2 above). Our estimates of the amplitude are f=0.78+£0.03% for
the square lattice and f=0.9640.04 for the triangular lattice. These esti-
mates are based on extrapolation of the sequences fy using a variety of
extrapolation algorithms, including Levin’s u transform, Brezinski’s 6 algo-
rithm, Neville-Aitken extrapolation and Wynn’s e algorithm. Details of
these and other algorithms, as well as programs for their implementation,
can be found in ref. 70.

As noted in Section 2.2, the observation that § =3/2 implies the con-
straint (2.44) on the subdominant amplitudes arising in (2.40)—(2.42). Our
series estimates (3.22)—(3.24) and (3.27)—(3.29) are consistent with this pre-
diction, as are our Monte Carlo estimates (4.3)—(4.11). Furthermore, our
series and Monte Carlo estimates of f are consistent with the relation
(2.45); but the associated error bars are very large, so this is not a strin-
gent test.

Finally, we note the fact that §=3/2 is another indicator that the cor-
rection-to-scaling exponent is indeed 3/2. If it were less than this, then
the leading non-analytic correction-to-scaling term would have to cancel
miraculously (as the 1/N term does) in the combination (2.11) for fy.
This seems a priori unlikely.

3.5. Euclidean-Invariant Moments of the Distribution Function

We have also analysed the series for rotationally-invariant and non-
rotationally-invariant moments of the endpoint distribution function, given
in Tables III-VI, using methods similar to those just described for the
analysis of (R2). Let us start with the rotationally-invariant moments
(r*%yn, for which we expect an asymptotic behaviour of the form

)y ~ N [eo 1 /N +cap /N +esp /N> +---1  (3.38)

19Tndeed, as shown in ref. 41 it appears to hold even in the case of interacting SAWs within
the good-solvent regime (i.e., above the theta temperature). Of course, the limiting constant
f depends on the interaction. For repulsive nearest-neighbour interactions, f increases
from 0.78 to an asymptotic value of about 1.6 as the repulsion gets very strong.
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for the triangular lattice, and

)y ~ N [cor +e1x/N+cop /N> +e30 /N> + -]
A
+(=DVN®dy  +dy /N +dog/N+---]  (3.39)

for the square lattice. In Section 2.2, we gave arguments predicting that
gk =2kv+a—1—y =3k/2—-159/32. Furthermore, it is reasonable to expect
A?F =1 as was already observed for the SAW counts(!”) and for the
metric quantities (R2). Our numerical results are consistent with these
predictions.

We began by analysing the moments (r2%)y using the method of
differential approximants,’1-7" with the aim of confirming the predicted
leading exponents 2kv = 3k/2 and ¢y = 3k/2 — 59/32. It is a previously
observed feature of the method of differential approximants (DA) that its
application to the analysis of SAW moment series is less accurate than
might be expected.’) For example, DA analysis of a 27-term square-
lattice (Rg) N series, biased at a critical point of 1, produces estimates of
2v in the range 1.495-1.497,D whereas an umbiased analysis of a 27-
term SAW series on the same lattice yields exponent estimates of y =
1.34364 +0.00088, which is rather more accurate, as well as more precise.
This behaviour is most likely connected to the fact that the method of
differential approximants tacitly assumes that the function is well approx-
imated by a differentially finite (D-finite) function, i.e. the solution of a
linear ordinary differential equation with polynomial coefficients.(" While
there is strong evidence that neither SAWs nor SAPs are D-finite,("? it
nevertheless appears that the SAW and SAP counts are well approximated
by a D-finite function, while the generating functions for SAW and SAP
metric properties (such as (R2)y) appear not to be. Evidence for this
remark includes the telling fact that most of the differential approximants
for (R?) (for both SAWs and SAPs) are defective,(’!) which is usually a sig-
nal that the function being approximated is not of the type tacitly assumed
by the analysis. For this reason, our DA analysis gives only moderately
accurate estimates of the leading exponents, both ferromagnetic and anti-
ferromagnetic, but no reliable information as to the value of the sublead-
ing exponents.

Our DA analysis confirmed the expected leading behaviour (r2%)y o
N3k/2) the exponents being identified as 1.4997(5), 2.998(6), 4.496(9),
5.996(12), and 7.496(12) for k=1,2,3,4,5 on the square lattice, and
1.4997(5), 2.996(7), 4.495(9), 5.997(12), and 7.500(10) for k=1,2,3,4,5
on the triangular lattice. DA analysis also gave reasonable estimates of the
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leading antiferromagnetic exponent on the square lattice: we found ¢; =
3k/2—59/32 to an accuracy of approximately 0.01, 0.04, 0.05, 0.05, 0.06
for k=1,2,3,4,5, respectively. It is possible that higher moments (k > 1)
may have non-analytic correction-to-scaling terms with exponent A| < 1.5
which would then be more prominent than the leading correction-to-scal-
ing term of the second-moment quantities (R?). A more prominent such
singularity would also explain the relatively poor accuracy of the DA anal-
ysis. We allow for this possibility in our analysis, described immediately
below, but find no evidence for such a term.

We next proceeded to fit (r2¥)y to the asymptotic forms (3.38) and
(3.39), setting v=3/2 and ¢y =3k/2—59/32 and investigating the quality
of the fit for a variety of possible values of A and Af‘F. Among other
things, we considered the possibility that A} <1, even though no such
term is observed in the metric quantities (R?)y.

We first fitted the available series to the above forms with Ay =1/2.
Estimates of the associated amplitude were, in all cases, monotonically
decreasing toward zero. Furthermore, as we increased the number of sub-
dominant terms included in the fit, this amplitude approached zero more
and more closely. The data are insufficient to judge whether the rate of
approach to zero increased, but the entries were numerically smaller. Also,
estimates of the leading amplitude co did not display the sort of con-
vergence we found in the analysis of (R2)y; rather, the convergence dete-
riorated as we increased the number of subdominant terms included in
the fit. Both of these observations suggest that there is no term c; /N1
with A;~1/2. Similar behaviour was observed with A; =11/16, though
we cannot say whether the effect was stronger or weaker. That is to
say, the analysis is insensitive to this level of exponent change for these
series. This is consistent with the situation found in the analysis of (R?).
We conclude that there is no evidence of a correction term cj /N1
with Aj <1.

We then reanalysed the data assuming that the only correction-to-
scaling term, other than integer powers of 1/N, was that with exponent
A1 =3/2, exactly as found for the second-moment series. As for the sec-
ond-moment series, we retained only analytic correction terms to the anti-
ferromagnetic singularity. As we increased the order of the fit, the leading
amplitudes ¢ and dp displayed improved convergence. This is usually
an indicator that the guessed asymptotic form is correct. The higher-order
amplitudes displayed less convincing convergence, but we ascribe this to a
lack of adequate data. For the second moment, we have a 59-term series,
which converged rather well, as can be seen from Table VIII. But the con-
vergence is much less impressive after only 32 terms—which is all we have
available for the higher moments.
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Taken together, our results favour the most obvious conjecture, which
is that the subdominant behaviour is characterised by the same exponent
set as is observed for (R2)y.

In order to test the conclusion that the leading correction term in
all these series is the 1/N term, we used the method of differential ap-
proximants on a modified series obtained by subtracting the estimated
leading-order term from the original series: that is, we analysed (r%)y —
co.xN Zkv We found that the series coefficients behave like N2¥V=1  consis-
tent with the conclusion that the leading correction term is 1/N and that
the non-analytic correction-to-scaling term(s), have exponent A; > 1, con-
sistent with our view that A} =3/2.

With the foregoing observations in mind, we obtained the following
estimates for the corresponding amplitudes for the square-lattice moments
(r*fyn, where we have assumed a single correction-to-scaling exponent
A1 = 3/2 associated with the ferromagnetic singularity, and otherwise
only analytic corrections to both the ferromagnetic and antiferromagnetic
singularities:

k=2: cp2=0.860(2), c12=1.9(2),
dp2=0.139(5), d1 »=-0.03(2), (3.40)

k=3: cp3=1.184(5), c1.3=3(1),
dp.3=0.193(5), d1’3=—2(1), (3.41)

k=4 €04 = 1.907(10), Cl1,4 =2.5(5),
do.4=0.310(3), dy 4 =—0.46(5), (3.42)

k=5 co5=3.434(10), ;5 =—3(1),
do5=0.5513), dy s =—1.6(2). (3.43)

As a check we verify relation (2.34). Our results for ¢y predict do /cor =
0.161292(2), a relation that is well satisfied by our results for cp; and dp k.

We can now provide a direct estimate of the invariant ratios Mo y =
r*yn/ (;’2)’1‘v in the limit N — oo. From the above amplitude estimates, we
have, for the square lattice,

Mo = 1.446(3) (3.44)
Moo = 2.581(11) (3.45)
Mg o0 = 5.391(28) (3.46)

M10.00 = 12.59(4). (3.47)
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These estimates agree well with the estimates (2.18)—(2.21) obtained previ-
ously,*? but are a factor 5-10 less precise.

For the triangular lattice, there is of course no “antiferromagnetic”
singularity, so that the terms corresponding to the amplitudes d;; are
absent. We find from the triangular lattice data:

k=2: c02=0.733009), c12=1.2(2), c22=—5(1), (3.48)
k=3 c3=0.934(2), c;.3=1.5(5), (3.49)
k=4: co4=1383(3), c14=2(1), (3.50)
k=5 co5=231(3), c1.5=—8.4(5). (3.51)

From the above amplitude estimates, we have, for the triangular lattice,

My = 1.446(2) (3.52)
M o0 = 2.588(5) (3.53)
Mg o = 5.381(12) (3.54)

Mi0.00 = 12.64(15). (3.55)

These estimates agree well with those found for the square lattice, confirm-
ing the expected universality. Therefore they are also in agreement with the
field-theory estimates (2.18)—(2.21), though less precise.

3.6. Non-Euclidean-Invariant Moments of the Distribution
Function

In this section we discuss the behaviour of the non-rotationally-invari-
ant moments: (r2K cos46)y with k=2,3,4 and (r8cos89)y for the square
lattice, and (r?* cos60)y with k=3, 4 for the triangular lattice.

Let us first consider the triangular lattice. We began by analysing
the series using the method of differential approximants, with the aim of
determining the leading exponent. For the triangular lattice we write

(l’zk cos60)y ~ N2kv_A’"[a0,k —|-a],k/NA +ar /N+---]. (3.56)
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Using first- and second-order differential approximants, we found Ay, =
3.00£0.10 for k=3 and A, =2.95+0.10 for k=4, from which we con-
jecture that A, =4v =3 exactly, as predicted in Section 2.1.

Fitting the triangular-lattice data to the asymptotic form (3.56), we
found good convergence only if we set the correction-to-scaling exponent
to a value A= 1/2—in sharp contrast to situation for the corresponding
rotationally invariant moments, where we found A =3/2. To test the con-
jecture that the leading correction is N~!/2, we subtracted the estimated
leading term ao,kNZk"_A“r from (r* cos66)y and analysed the resulting
series. It was found to behave as al,szk”’A"r’O'SOio'lo, implying that A=
0.5£0.10. At this stage, we have no theoretical explanation for this numer-
ical observation. Setting Ay =3 and A =1/2 and assuming subsequent
half-integer terms in the asymptotic expansion (3.56), we obtained the
following estimates for the triangular-lattice amplitudes:

k=3: ap3=1.120(3), a1 3=—1.95(5), ar 3=1.7(4) (3.57)
k=4: ap4=4.05(5), a1 4=-9(1), ap.4=20(4). (3.58)

For the square lattice, equation (3.56) needs to be modified by the
addition of a term representing the antiferromagnetic singularity, so we
write

(r** cos48)y ~ N*"~Aor[ag i +ay i /N® +ap /N +- -]
+(=DVNY[bos+b1x/N' +by/N>+---1.  (3.59)

From first- and second-order differential approximants applied to
the square-lattice data, we found A, = 1.46 4+ 0.03, Ay = 1.45 £ 0.06
and Apr = 1.44 + 0.09 for k = 2,3,4, respectively. From these results
we conjecture that Ap = 2v = 3/2 exactly, as predicted in Section 2.1.
Differential-approximant analysis also gave reasonable estimates of the
leading antiferromagnetic exponent: we found v = 2kv — A, — 3 +
y =2kv — 101/32, accurate to £0.013 for k =2, £0.05 for k=3, and
£0.15 for k=4. This expression for y is different from the one which
is the natural generalization of the result for the Euclidean-invariant
moments, 2kv — Ay + o — 1 — ¢y = 2kv — 107/32, which is excluded
from the analysis: the difference is 6/32 =0.1875, much larger than the
errors.

Fitting the data to the above asymptotic form (3.59) with Ap =3/2
and ¢ =2kv —101/32, and assuming only analytic corrections to scaling
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at the antiferromagnetic critical point, as found for all the other series,
we again found good convergence only if we set the ferromagnetic cor-
rection-to-scaling exponent A to approximately 1/2, just as was found in
the analysis of the triangular-lattice data. As in the triangular-lattice anal-
ysis, we verified this conjecture by subtracting the estimated leading term
ag g N?V=2or from (r?f cos46)y and analysing the resulting series, which
was found to behave as aj j N2KV—2n=0497£0.005 Thjs is strong support for
an N~!/2 correction.

Setting Apr = 3/2, ¥ =2kv — 101/32 and A = 1/2 and assuming
subsequent half-integer terms in the asymptotic expansion of the ferro-
magnetic singularity (3.59), we obtained the following estimates for the
square-lattice amplitudes:

k=2: ap»=1.148(6), a; o =—1.70(5), ar»=2.7(3),
b2 =0.060(5), b1 »=0.6(2), (3.60)

k=3: ap3=3.200(10), a1 3=—6.25(10), a3 =12.0(5),
bo3=0.175(10), b1 3=1.2(4), (3.61)

k=4: a9 4=28.90(10), a; 4 =—-20(2), ax4=750(8),
bo.4=0.47(5), b1.4=3(1). (3.62)

Finally, we analyzed the series (r8cos80)y on the square lattice. A
differential-approximant analysis gave (r®cos86)y oc N307=0-1 We con-
jecture that the exponent is exactly 3, consistent with the behaviour
(r8cos80) y ox N8~ 2Anrs with Anr g =3. This is exact at the mean-field level
and also for the two-dimensional Ising model. In the same spirit that
we previously conjectured that A, =2v, we now conjecture that Ap, g =
4v. The antiferromagnetic exponent in (r8cos80)y was estimated to be
¥ =1.351+0.05, which, by analogy with the antiferromagnetic exponents
for (r2*cos46)y, we conjecture is exactly 8v — Aprg—3+y=43/32. We
found the subsequent analysis consistent with only analytic corrections at
the antiferromagnetic critical point. At the ferromagnetic critical point,
the data were again consistent with a leading N~!/2 correction-to-scaling
term. In an identical notation to that used above, we find the amplitudes
to be:

ap=135(2), a; = —540(10), a» = 1440(50),
bo=6.5(1), by =—11(3). (3.63)
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4. MONTE CARLO ANALYSIS
4.1. Summary of Our Data

We have also generated extensive Monte Carlo data, using the pivot
algorithm,37-73-79 for SAWs on the square lattice at selected values of
N in the range 40 < N <4000, measuring the observables (Rg), (Ré) and
(ern). The results are collected in Tables XI and XII. Unfortunately, in
some runs we did not measure all observables: in particular, for larger
values of N, the statistics available for (R,zn) are much smaller than for the
other radii. The statistics range from 10° to 10'% pivot iterations per point,
or approximately 107-10° times the integrated autocorrelation time Tint. A
for these observables.!!

We begin by analyzing the Monte Carlo data in an unbiased way, in
order to extract the leading amplitudes and the correction-to-scaling expo-
nents and amplitudes (Section 4.2). Then we compare the Monte Carlo

Table XI. Our Monte Carlo data for radii (R?)y as a function of walk length .
Errors (one standard deviation) are shown in parentheses
N (R2)N (R2)y (RZ)N Fn(R2)y
40 200.106 £ 0.011
60 364.977 + 0.012  51.2026 + 0.0031 160.10 + 0.04  0.71 + 0.08
80 559.656 + 0.033  78.4660 £+ 0.0051 245.51 £ 0.06 091 £+ 0.13
100 780.245 + 0.028  109.351 + 0.007 342.34 + 0.09  1.06 + 0.18
120 1023.812 £ 0.064 143.488 £ 0.010 449.39 £ 0.12  1.02 £ 0.24
140 1288.631 £ 0.064 180.599 + 0.013 565.93 + 0.16 0.67 + 0.32
150  1428.367 £ 0.035 200.185 £ 0.015 627.51 £ 0.18 0.32 £ 0.36
180  1875.399 £ 0.081  262.858 £ 0.020 823.95 £ 0.13  0.38 £ 0.26
200 2195.00 £ 0.11 307.676 £+ 0.024 964.36 £ 0.13  0.52 £ 0.27
250 3064.11 £+ 0.11 429.499 + 0.024 1346.26 £ 0.19  0.59 £+ 0.39
300 4024.66 + 0.17 564.226 + 0.021 1768.44 £ 0.07 0.71 £+ 0.18
400 6190.01 + 0.26 867.890 + 0.033 2720.27 £ 0.12  0.62 £ 0.28
500 8645.61 + 0.31 1212.26 £ 0.07 3799.66 + 0.25 0.57 £ 0.57
700  14311.70 £ 0.57 2007.10 + 0.11
1000  24421.12 + 0.85 3425.28 + 0.11 10734.5 £ 0.53 1.15 £ 1.20
1400  40439.29 + 2.11 5671.95 + 0.42
2000  69028.33 + 3.82 9684.17 £ 0.79 30347.0 + 3.5 —-0.6 £ 7.5
3000 1267894 + 7.9 17790.3 £ 2.1
4000 195162.3 £+ 12.2 27376.1 £ 2.7 85773.6 + 13. 40 + 27

'High-precision Monte Carlo data for (R2)y have been kindly provided by Peter Grassber-

ger. His results have been merged with ours and appear in Tables XI and XII.
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Table XIl. Our Monte Carlo data for amplitude ratios as a function of walk
length

N AN By CN FN
60 0.140290 (10) 0.438644 (100) 0.319826 (76) 0.001957 (200)
80  0.140204 (12)  0.438689 (120)  0.319598 (85)  0.001635 (230)
100 0.140149 (11) 0.438756 (120) 0.319425 (88) 0.001354 (240)
120 0.140150 (13) 0.438938 (120) 0.319294 (88) 0.000992 (240)
140 0.140148 (12) 0.439171 (130) 0.319118 (93) 0.000518 (250)
150 0.140149 (11) 0.439320 (130) 0.319014 (94) 0.000225 (250)
180 0.140161 (12) 0.439347 (71) 0.319022 (55) 0.000204 (140)
200 0.140171 (13) 0.439344 (63) 0.319047 (49) 0.000236 (120)
250 0.140171 (9) 0.439365 (64) 0.319030 (48) 0.000193 (130)
300 0.140192 (8) 0.439402 (26) 0.319052 (18) 0.000177 (45)
400 0.140208 (8) 0.439462 (26) 0.319045 (18) 0.000101 (46)
500 0.140216 (10) 0.439490 (33) 0.319043 (29) 0.000066 (66)
700 0.140242 (10)

1000 0.140259 (7) 0.439557 (27) 0.319091 (19) 0.000047 (48)

1400 0.140258 (13)

2000 0.140293 (14) 0.439630 (56) 0.319115 (45) —0.000008 (110)

3000 0.140314 (19)

4000 0.140274 (16) 0.439499 (71) 0.319167 (57) 0.000204 (140)

Errors (one standard deviation) are shown in parentheses.

data, which lie at relatively high N but are afflicted by statistical errors,
with the formulae (3.27)-(3.29) obtained by extrapolating the series data,
which lie at much smaller N but are exact (Section 4.3).

4.2. Data Analysis

In order to determine the leading amplitudes and the correction-to-
scaling exponent(s) and amplitude(s), we have analysed the three quanti-
ties (Rez), (Ré) and <R§1>- We first tried nonlinear least-squares fits of the

form!?

(R)N/N* =a+b(N/Ny)™>, 4.1

I2Note that we have rescaled the length N by a fixed parameter Ny that has always been
taken equal to Ny = 750. The purpose of this rescaling is to minimize the covariance
between the estimates of b and A. (The optimal choice is to take Ny equal to the weighted
geometric mean of the N values occurring as data points.) As a consequence, the relative
error on b is a factor of 3-4 smaller than in fits with Ny =1. The error on A does not
depend on the choice of Ny.
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in which v has been fixed equal to 3/4 and the parameters a, b, A are
free. In these fits we use only the data with N > some cutoff value Npyn;
we then vary N, systematically and investigate the quality of the fit (see
Tables XIII-XV). For Ny, =60 the x2 values are reasonable. The fits are

Table XIIl. Fit (R2) = N?"[a, + be(N/750)2]

Npin e be A x2 DF CL
40 0.770998(23) 0.001644(16) 0.855(3) 409 16 0.1%
60  0.771054(25) 0.001589(19) 0.869(4) 149 15 46.2%
80  0.771081(30) 0.001559(26) 0.878(7) 122 14 59.0%

100 0.771106(32) 0.001532(29) 0.887(8) 84 13 82.0%
120 0.771122(37) 0.001512(36) 0.894(12) 76 12 81.8%
140 0.771140(38) 0.001491(38) 0.902(13) 48 11 93.9%
150 0.771140(39) 0.001492(39) 0.902(13) 48 10 90.2%
180 0.771160(45) 0.001467(47) 0.914(19) 4.1 9 90.7%
200  0.771148(49) 0.001481(54) 0.906(23) 3.7 8 88.1%
250 0.771155(55) 0.001472(62) 0.911(29) 3.6 7 82.0%
300  0.771148(64) 0.001481(73) 0.905(39) 3.6 6 73.2%
400  0.771136(82) 0.001495(94) 0.895(58) 3.5 5 61.8%
500  0.771161(93) 0.001469(104)  0.921(80) 33 4 51.0%
700 0.771249(110)  0.001396(109)  1.051(156) 2.3 3 51.1%
1000 0.770975(410)  0.001571(344)  0.692(332) 0.9 2 62.4%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

Table XIV. Fit (R2)=N?"[ag + by(N/750)4]

Niin ag by A x> DF CL
60 0.108213(4) 0.000142(3) 1.037(8) 199 15 17.5%
80 0.108209(5) 0.000146(4) 1.023(11) 16.8 14 26.7%

100 0.108205(5) 0.000151(5) 1.007(15) 142 13 35.9%
120 0.108205(6) 0.000150(5) 1.008(18) 142 12 28.8%
140 0.108207(6) 0.000148(6) 1.018(22) 13.5 11 25.9%
150 0.108207(7) 0.000148(7) 1.019(26) 135 10 19.5%
180 0.108210(8) 0.000145(8) 1.033(34) 13.1 9 15.7%
200 0.108208(9) 0.000147(9) 1.023(41) 12.9 8 11.4%
250 0.108205(10) 0.000151(11) 1.000(53) 12.5 7 8.5%
300 0.108208(11) 0.000147(13) 1.025(66) 12.1 6 6.0%
400 0.108201(15) 0.000155(17) 0.966(100)  11.5 5 4.2%
500 0.108198(19) 0.000158(21) 0.937(146)  11.5 4 2.2%
700 0.108213(20) 0.000146(19) 1.161(286)  10.6 3 1.4%
1000 0.107954(1213)  0.000384(1200)  0.206(779) 8.8 2 1.3%

DF is the number of degrees of freedom and CL is the confidence level of the fit.
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Table XV. Fit (R2)) = N?"[ap, + b,(N/750)2]

Nmin Aam bm A )(2 DF CL

60 0.338957(32)  0.00063527)  0.850(17) 154 12 21.9%
80 0.338932(38)  0.000661(33)  0.828(23) 133 11 27.1%
100 0.338940(41)  0.000652(38)  0.836(29) 131 10 21.7%
120 0.338971(43)  0.000618(41)  0.871(36) 102 9 33.6%

140 0.339008(44)  0.000577(42)  0.917(42) 578 68.1%
150  0.339018(45)  0.000566(44)  0.930(47) 53 7 627%
180 0.339013(48)  0.000571(48)  0.923(52) 52 6 521%
200 0.338990(56)  0.000598(58)  0.890(62) 42 5 517%
250 0.338962(71)  0.000630(75)  0.852(79) 37 4 453%
300 0.338955(75)  0.000638(81)  0.842(84) 36 3 313%
400 0.338915(115)  0.000683(126)  0.784(136) 3.3 2 19.2%
500 0.338896(146)  0.000702(155)  0.752(186) 3.2 1 7.2%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

stable and the error bars reasonable up to Np;, ~700; after this, the error
bars increase drastically and the estimates should be considered unreliable.

Let us consider first (Rg) and (Ré), the radii for which we have the
best statistics. The fit for the radius of gyration is extremely stable!? and
clearly suggests A=1. No subleading exponent with A <1 appears to be
present; in particular, this excludes A =11/16=0.6875 unless the corre-
sponding amplitude is extremely small. By contrast, the fit of (Rg) gives
estimates that vary with Np;,: the estimate of A at first increases with
Nnin, then flattens off at A~0.9. The theoretical prediction A=11/16 is
again excluded, but in this case a non-analytic correction Aj <1 is still
possible a priori. However, we believe that a subleading exponent A;~0.9
is unlikely: after all, it does not agree with any theoretical prediction; and
the observed behaviour can be explained equally well, as noted earlier, by
the competition between two correction terms of opposite sign, provided
that both terms are still sizable in the range of N that we are consider-
ing. The fact that a range 500 < N <4000 is insufficient to see clearly that
A =1 shows how difficult is the determination of A and explains the wide
range of contradictory results found in previous work.

13The x? of the fit is somewhat large, and the corresponding confidence level too small.
Since the confidence level actually gets worse as Npi, grows, the cause does not seem to
be corrections to scaling. The most likely interpretation is that our error bars are, for some
unknown reason, somewhat underestimated for large values of N. (Perhaps we have under-
estimated the integrated autocorrelation time by failing to include a sufficient amount of
the tail of the autocorrelation function.)
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We can also consider (Rl%]). The behaviour is similar to that observed
for (Rg), although the errors are larger. Again, the data are compatible
with A~0.9, but, as before, we believe that what we are observing is sim-
ply an effective exponent arising from the competition between two correc-
tion terms of opposite sign. Moreover, we are here probing shorter walks
than in the case of (Rg), because of the lack of statistics for larger N: the
fit is effectively dominated by the data in the range 300 <N < 1000.

Since we have little evidence that A;=11/16, the most likely possibil-
ity is that A; =3/2. We have therefore checked whether our data can be
fitted by the simple Ansatz

(RN = N¥(a+bN "1 4cN732, 4.2)

with a, b, ¢ free parameters. As before, we perform several fits using only
data with N > Ny, varying Np;, systematically. The results are reported
in Tables XVI-XVIII. The fit quality is good even for the lowest value of
Nnin: additional corrections do not play much role for N = 60. Notice that
for (Ré) the constant ¢ is very small, explaining why the previous fit gave
A =1 essentially without corrections. For (Rg) and (jo), ¢ is instead siz-
able and of opposite sign with respect to b, giving in fit (4.1) an effective
exponent A < 1.

Table XVI. Fit (R2)=N2"(a, + beN~"1+ ¢, N—3/2)

Npin de be Ce %2 DF CL
40  0.771261(16) 1.093(7) —1.93(4) 154 16 49.4%
60  0.771247(18) 1.104(9) —2.03(7) 12.1 15 67.1%
80 0.771224(20) 1.131(15) —2.30(14) 6.7 14 94.6%

100 0.771224(22) 1.131(18) —2.30(18) 67 13 91.7%
120 0.771211(25) 1.150(26) —2.52(29) 57 12 93.0%
140 0.771218(27) 1.139(29) —2.39(32) 50 11 93.1%
150  0.771216(27) 1.143(30) —2.44(34) 48 10 90.1%
180 0.771218(31) 1.137(42) —2.36(54) 438 9 85.0%
200  0.771206(33) 1.165(52) —2.79(70) 3.9 8 86.6%
250  0.771204(37) 1.170(65) —2.86(95) 3.9 7 79.3%
300 0.771194(42) 1.199(87) —3.38(1.41) 3.6 6 72.6%
400  0.771177(53) 1.257(136) —4.50(2.46) 3.3 5 64.9%
500 0.771187(62) 1.218(186) —3.68(3.65) 3.2 4 51.9%
700 0.771244(85) 0.936(340) 3.16(7.80) 23 3 52.2%
1000 0.771118(142)  1.680(755)  —16.96(19.82) 1.0 2 59.7%

DF is the number of degrees of freedom and CL is the confidence level of the fit.
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Table XVII. Fit (ﬂ'g)zNz"(ag+ng*1 +cgN—312)

Npin dg bg ce %2 DF CL
60 0.108209(3) 0.107(2) 0.08(2) 17.8 15 27.5%
80 0.108207(4) 0.109(3) 0.06(3) 16.3 14 29.3%

100 0.108204(4) 0.113(4) 0.02(4) 143 13 35.6%
120 0.108204(5) 0.113(5) 0.02(5) 14.3 12 28.5%
140 0.108206(5) 0.110(6) 0.05(6) 13.5 11 25.9%
150 0.108206(5) 0.110(6) 0.06(8) 13.5 10 19.6%
180 0.108208(6) 0.106(8) 0.11(11) 13.0 9 16.4%
200 0.108207(7) 0.108(10) 0.08(14) 12.9 8 11.7%
250 0.108205(8) 0.113(13) 0.00(19) 12.5 7 8.5%
300 0.108208(9) 0.106(17) 0.12(25) 12.0 6 6.1%
400 0.108203(11) 0.120(26) —0.14(45) 11.5 5 4.2%
500 0.108201(13) 0.128(37) —0.30(72) 11.5 4 2.2%
700 0.108212(17) 0.076(64) 0.95(1.46) 10.5 3 1.5%
1000 0.108185(30) 0.227(156) —3.03(4.03) 9.4 2 0.9%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

Table XVIIl. Fit (R2)=N?(ap + byN~" + cnN—3/2)

Npmin am b cm %2 DF CL
60 0.339040(21) 0.447(14) —0.99(12) 18.6 12 9.9%
80 0.339013(23) 0.479(18) —1.37(18) 11.3 11 41.7%

100 0.339008(25) 0.487(23) —1.47(26) 11.0 10 35.7%

120 0.339019(27) 0.469(28) —1.23(34) 9.8 9 36.4%

140 0.339038(29) 0.436(33) —0.76(42) 6.3 8 61.7%

150 0.339044(30) 0.426(37) —0.61(48) 5.9 7 55.6%

180 0.339041(32) 0.431(41) —0.69(55) 5.8 6 44.8%

200 0.339028(34) 0.457(49) —1.09(69) 49 5 43.1%

250 0.339010(41) 0.496(68) —1.69(1.01) 42 4 38.0%

300 0.339005(43) 0.508(75) —1.88(1.13) 4.1 3 25.5%

400 0.338976(62) 0.583(140) —3.21(2.37) 3.6 2 16.1%

500 0.338964(74) 0.623(194) —4.04(3.62) 3.6 1 5.9%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

The leading amplitudes

Npmin =200, we can estimate

ae = 0.77121 +£0.00004

be = 1.1740.05
ce = —2.840.7,

are extremely stable and, using the data with

4.3)
(4.4)
4.5)
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ag = 0.108207 £ 0.000007 (4.6)
bg = 0.108£0.010 @.7)
cg =0.040.2, (4.8)
am = 0.33903 £ 0.00004 (4.9)
bm = 0.46£0.05 (4.10)
em = —1.1£0.7. @.11)

where the error bars are 68% confidence limits. We can compare these
results with the series estimates (3.27)—(3.29), and note that they agree well
within quoted errors with one exception: ag differs by three error bars
from one set of the corresponding series estimate. We consider the stated
errors of this series estimate to be anomalously low, compared to all other
error estimates, and thus not to be taken literally.

We have also considered the universal amplitude ratios Ay and By.
The most notable feature of the raw data for Ay (Table XII) is its nonmo-
notonicity: at first Ay decreases, reaching a minimum at N ~130; then it
increases. This immediately suggests the presence of two correction-to-scal-
ing terms of opposite sign, in agreement with the analysis presented above.
We have therefore analysed the ratios Ay and By by performing a fit of
the form

Oy =a+bN~ 14N, (4.12)

The results are reported in Tables XIX and XX. Again the quality of the
fits is quite good, and we obtain the final estimates (again we use conser-
vatively the data for Np;, =200)

A =0.140310£0.000011 (4.13)
B = 0.439614+0.000050, (4.14)

where the error bars are 68% confidence limits.!4

Next we analysed the CSCPS combination (2.11). Conformal-invari-
ance theory(29’30) predicts that limy_~ Fy =0, and we confirm this pre-
diction numerically to very high precision: see Table XXI. Therefore, fx

4Cardy and Mussardo® have used the form-factor method, applied to the exact S-matrix
of the massive O(n) model, to derive the estimates A=~0.126 and B~0.420. This is impres-
sive accuracy for a first-principles theoretical calculation; the approximately 5% error is
about what one expects from the one-particle approximation used in this computation.
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Table XIX. Fit Ay=as-+baN-"1+caN-3/2

Nmin aa ba CA x2 DF CL
60 0.140305(6) —0.062(3) 0.47(2) 8.4 15 90.7%
80 0.140306(6) —0.064(5) 0.49(4) 8.1 14 88.2%

100 0.140303(7) —0.060(6) 0.45(6) 7.1 13 89.6%
120 0.140306(8) —0.064(8) 0.49(9) 6.6 12 88.2%
140 0.140306(8) —0.064(9) 0.50(10) 6.6 11 83.0%
150 0.140307(9) —0.065(10) 0.52(12) 6.5 10 77.0%
180 0.140309(10) —0.071(13) 0.59(17) 6.2 9 72.5%
200 0.140310(11) —0.072(16) 0.62(22) 6.1 8 63.4%
250 0.140307(12) —0.065(21) 0.51(31) 5.9 7 55.7%
300 0.140312(14) —0.078(27) 0.72(42) 53 6 50.3%
400 0.140310(18) —0.072(42) 0.61(74) 53 5 38.2%
500 0.140304(21) —0.049(59) 0.12(1.15) 5.0 4 28.9%
700 0.140306(27) —0.060(104) 0.39(2.38) 5.0 3 17.4%
1000 0.140297(47) —0.007(244) —1.03(6.34) 4.9 2 8.6%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

Table XX. Fit By —=ag+bgN "+ cgN-3/2

Nin ag bg cp X2 DF CL
60 0.439619(31) —0.062(21) —0.02(17) 128 12 38.1%
80 0.439587(34) —0.024(27) —0.45(27) 83 11 68.3%
100 0.439578(38) —0.012(34) —0.61(37) 80 10 63.2%
120 0.439596(41) —0.040(42) —0.24(49) 6.6 9 67.5%
140 0.439620(43) —0.082(49) 0.34(61) 4.0 8 85.6%
150 0.439629(45) —0.098(55) 0.59(70) 3.5 7 83.4%
180 0.439626(48) —0.091(61) 0.48(80) 3.4 6 75.2%
200 0.439614(51) —0.068(73) 0.12(1.01) 3.1 5 68.5%
250 0.439590(61) —0.014(102)  —0.72(1.52) 2.5 4 63.6%
300 0.439583(65) 0.004(118)  —1.02(1.79) 24 3 48.5%
400 0.439558(89) 0.073(207)  —2.27(3.55) 23 2 31.9%
500 0.439528(106) 0.174(284)  —4.35(5.35) 2.0 1 15.6%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

is expected to scale as N2'~% where § is some subleading exponent. Our
data are consistent with § =3/2, although not so accurate as to estab-
lish it unambiguously; in other words, fx appears to approach a nonzero
constant as N — oo. This means, as noted earlier, that the 1/N correction
is absent within our errors. A fit to a constant gives the results reported
in Table XXII. The results show an initial downward trend with N,;, and
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Table XXI. Fit Fy=af +be N+ cpN-3/2

Nmin ar br cF X2 DF CL

60 0.000043(59) —0.039(39) 1.30(33) 11.5 12 49.0%

80 0.000105(65) —0.112(52) 2.14(51) 6.7 11 81.9%
100 0.000117(71) —0.129(65) 2.36(71) 6.5 10 76.8%
120 0.000087(77) —0.082(79) 1.72(94) 5.4 9 79.4%
140 0.000041(82) —0.004(93) 0.64(1.17) 3.0 8 93.5%
150 0.000026(86) 0.023(104) 0.24(1.34) 2.6 7 91.7%
180 0.000037(90) 0.002(116) 0.54(1.54) 2.5 6 87.2%
200 0.000064(98) —0.052(139) 1.38(1.94) 2.0 5 85.3%
250 0.000110(116) ~ —0.153(195)  2.95(2.89) 1.4 4 83.9%
300 0.000133(124)  —0.205(220)  3.80(3.32) 1.2 3 76.2%
400 0.000167(174)  —0.298(398)  5.45(6.75) 1.1 2 58.1%
500 0.000189(206)  —0.372(545)  6.98(10.23) 1.0 1 30.7%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

Table XXII. Fit Fy<R2>y =f

Nmin f x2 DF CL
60 0.75(5) 12.7 14 55.4%
80 0.79(7) 12.2 13 51.3%

100 0.73(8) 10.7 12 55.4%
120 0.65(9) 6.7 11 82.0%
140 0.58(10) 4.1 10 94.5%
150 0.57(11) 4.0 9 91.2%
180 0.60(11) 3.5 8 90.3%
200 0.64(12) 2.7 7 91.5%
250 0.68(14) 2.4 6 88.1%
300 0.69(15) 2.3 5 80.2%
400 0.64(25) 23 4 68.6%
500 0.69(51) 2.3 3 52.0%
1000 1.18(1.17) 2.0 2 36.1%

DF is the number of degrees of freedom and CL is the confidence level of the fit.

then increase again. A stable region may be identified for Ny, >250. For
Npin =250 we have

f=068+0.14.

(4.15)

This is in agreement with, but less precise than, the result f=0.79+
0.03 obtained from series analysis.
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Finally, we have tried to see whether our estimated values of A and B
are consistent with simple rational values that satisfy the CSCPS formula.
If we require the denominators to be <1000, then the only possible values
anywhere near our estimates are

23 40
A=~ 0.1402439, B=g; 0.4395604 (4.16)
and
91 95
A= o~01404321,  B= o ~0.4398148. (4.17)

Our data are, however, precise enough to clearly exclude both guesses. We
therefore conjecture that A and B do not take simple rational values, even
though one particular linear combination of them does.

4.3. Comparison to Series-Extrapolation Predictions

We can also directly compare our raw Monte Carlo data to the
extrapolation formulas (3.27)—(3.29). For this purpose we compute

R2 —R2~ 2
X2: Z ( MC - serles) , (418)

MC data Mc

where R%,,C is the Monte Carlo estimate, oys¢ the corresponding error, and
Rszeries the prediction of the extrapolations (3.27)—(3.29). For (Rg) we find
that (3.27) describes the numerical data rather well. Indeed, x*=29 for 19
data points. The small remaining discrepancy is mainly due to the error
on the coefficients. Indeed, if we use for the ferromagnetic part the results
of the Monte Carlo fit with Ny, =40 reported in Table XVI—these esti-
mates are compatible with the exact-enumeration ones reported in (3.27)—
the x> drops to 15. Analogous discussion applies to (R2). If we use (3.29)
we obtain x2=355 with 15 data points. But again it is enough to replace
the ferromagnetic coefficients obtained using exact enumeration with those
obtained in the Monte Carlo fit, see Table XVIII—they are fully compati-
ble—to have x2=19 with 15 points. The situation is worse for (Ré). Using
all data we obtain x2 =80 with 18 data points. Such a result does not
improve significantly if we change the coefficients in (3.28) within error
bars. This is related to the fact we have already noticed that the leading
amplitude for (Ré) ~ reported in (3.28) significantly differs from the Monte
Carlo estimate obtained for any value of Np;,.
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5. CONCLUSIONS AND OPEN QUESTIONS

In this study of the SAW correction-to-scaling exponents, we have
seen a consistent picture emerging, given independent support by both
Monte Carlo and series analysis. We have presented compelling evidence
that the first non-analytic correction term in the generating function for
both SAWs and SAPs, as well as in several Euclidean-invariant metric
properties, is A; =3/2, as predicted by Nienhuis some 20 years ago.>
We find no evidence for the presence of an exponent A|=11/16 in SAWs
and SAPs on the square and triangular lattices. Our analysis of the inter-
play between dominant and subdominant correction-to-scaling terms also
enables us to explain quantitatively why many earlier analyses gave incor-
rect conclusions, predicting exponents A; < 1. For certain observables, we
find pairs of correction terms of opposite sign that conspire to give effec-
tive exponents that are smaller than both of the individual exponents.
Thus, corrections behaving as a/N +b/N3? with ab <0 were incorrectly
identified with a single correction term ¢/N®! with Ay <1.

Monte Carlo and series analysis turn out to complement each other
well. Series provide a basis for calculating the amplitudes of several sub-
dominant asymptotic terms, while the Monte Carlo data frequently pro-
vide greater accuracy for the estimate of the leading amplitudes.

We have also studied the asymptotic behaviour of several non-Euclid-
ean-invariant quantities. Their leading behaviour is characterized by a new
exponent Ap,. We find compelling evidence that An, =2v on the square
lattice and Apr =4v on the triangular lattice, confirming the conjecture
of 443 We also computed the leading correction-to-scaling exponent in
these observables, finding A; ~ 0.5. We are unaware of any theoretical
prediction for this quantity.

We have also determined the dominant and subdominant exponents
characterizing the “antiferromagnetic singularity” of the square lattice.
These exponent predictions are for the most part new.

We also tested the CSCPS relation limy_, oo Fy =0 [cf. (2.10)], which
arises from conformal field theory.?%-3® Both our Monte Carlo and series
work are completely consistent with the CSCPS relation. Further, we find
that the 1/N correction term in Fy is absent, so that Fy ~const x N™41
with A; = 3/2. The absence of this analytic correction-to-scaling term
implies a new amplitude relation (2.44).

Finally, we remark that our numerical estimates for the universal
amplitude ratios A and B are now so precise as to allow us to rule out the
possibility that these are rational numbers with small integer denomina-
tors. Some other universal amplitude ratios include powers of 7,%% so it
is possible that A and B are combinations of m and rational numbers; but
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there is no a priori reason why powers of 7w should enter into the ampli-
tude ratios A and B.
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