Note: This paper has not yet undergone external peer review

Exploring COVID-19 Transmission Risk and Vulnerability Through the Aotearoa Co-incidence Network (ACN)
as at September 2, 2021, author list alphabetical

Emily P. Harvey¹,², Matt Hobbs³,⁴, Joshua Looker⁵, Dion R.J. O’Neale¹,⁶,*, Will Scarrold¹,⁶,⁷,⁸, and Steven Martin Turnbull¹,⁶,*

¹Te Pūnaha Matatini, University of Auckland, Auckland, Aotearoa New Zealand
²M.E. Research, Takapuna, Auckland, Aotearoa New Zealand
³School of Health Sciences, University of Canterbury, Christchurch, Canterbury, Aotearoa New Zealand
⁴GeoHealth Laboratory, University of Canterbury, Christchurch, Canterbury, Aotearoa New Zealand
⁵Engineering Science, University of Auckland, Auckland, Aotearoa New Zealand
⁶Physics Department, University of Auckland, Auckland, Aotearoa New Zealand
⁷Mathematical Institute, University of Oxford, Oxford, United Kingdom
⁸Institute for New Economic Thinking, Oxford Martin School, Oxford, United Kingdom
*Corresponding author e-mail addresses: d.oneale@auckland.ac.nz; s.turnbull@auckland.ac.nz

EXECUTIVE SUMMARY

The current study uses data from Aotearoa New Zealand’s Integrated Data Infrastructure (IDI) to create a co-incidence network of workplace employment and school enrolment. The Aotearoa Co-incidence Network (ACN) provides a highly insightful tool to explore the manner in which the regions of Aotearoa New Zealand are connected to each other through co-incidence of individuals at workplaces and schools. We summarise the method used to create the ACN, and detail the ways in which it can be used to inform the Aotearoa New Zealand response to disease outbreaks, such as COVID-19. Specifically, we show how analysis of the network can be used to inform the strategy of mitigating existing outbreaks (“stamp-it-out”) by revealing those sets of areas between which an outbreak is likely to spread most quickly. We also show how analysis of the network structure can reveal spatially limited communities which can inform regional responses to disease outbreak (i.e., regional based interventions) should they need to occur, as well as specific areas of high transmission risk — both of these results can be used to aid a “prepare-for-it” strategy. Finally, we cross-reference our findings with data on disease vulnerabilities (i.e., long-term health conditions, ethnicity, and deprivation) to highlight specific areas with a combination of high risk of contagious disease transmission and elevated vulnerable to such diseases. A web-based app¹, developed alongside this publication allows for visualisation and exploration of transmission risk and vulnerability and is presented as a useful tool for decision and policy makers to inform more equitable responses to diseases such as COVID-19.
Key points:

- The Aotearoa Co-incidence Network (ACN) represents the connections induced by interactions between individuals from dwellings in different regions of Aotearoa. The ACN details the number of connections made through shared workplaces and schools, which gives an indication of likely transmission spread should an outbreak of disease (e.g., COVID-19) occur.

- The ACN makes no assumptions about the likely point of occurrence for an initial outbreak. That is, the transmission risk represented is an estimate of the risk of onward transmission to a region, for an initial outbreak that occurs at an arbitrary location in the country. Clearly, some regions (e.g. those with MIQ facilities and international airports) are at higher risk of being locations for seeding an outbreak. Such additional information should be considered alongside the ACN.

- We identify several spatially contiguous communities in the ACN based on the patterns of connections. Interestingly, these communities are similar to the Territorial Authority (TA) boundaries, with some exceptions. The communities tend the cover multiple TAs, and in some cases extend boundaries. For example, the community detected in the Auckland region covers Auckland TA but also extends further south. This community more closely reflects the actual region covered when Alert Level 3 was implemented in the Auckland region in August 2020.

- We use PageRank centrality to highlight geospatial areas that have the highest transmission risk based on the structure of connections in the ACN. Cross-referencing transmission risk with data on vulnerability allows us to take an equity-focused approach to determining areas most in need of support (be that from governmental, iwi, or community sources).

- We find that the regions with highest risk for transmission are located in urban areas, especially Hamilton, Wellington, and Palmerston North. Areas of low-transmission risk include Thames-Coromandel, Mackenzie, and Waitomo.

- When we consider the intersection of transmission risk and vulnerability, we find that the most at risk regions include places such as South Auckland, Invercargill, Whangārei, New Plymouth, and Napier, as well as Wellington and Hamilton.

Introduction

Understanding how individuals form connections across geographic regions is an important goal when it comes to understanding how society works. This challenge is especially relevant in the context of COVID-19, where efforts are increasingly being made to understand where transmission occurs between individuals, which areas are most at risk in terms of transmission, and which areas are most vulnerable as a consequence of transmission. Knowledge of how the connections shared between individuals and regions in society can potentially shape transmission is valuable. Firstly, this information can be used to inform a ‘prepare for it’ strategy, where forms of support, planning, and allocation of resources (such as increased testing or vaccination roll-outs) are preemptively established to aid areas that may be deemed high risk. In Aotearoa New Zealand, these kinds of strategies were demonstrated by the government itself, with its early introduction of border closures and strong nationwide lockdown in response to COVID-19 in March, 2020. These strategies were also demonstrated by specific communities themselves, with some iwi implementing roadblocks during the first community outbreak of COVID-19 in Auckland to prevent further transmission to other regions. Knowledge of how individuals and regions are connected can also aid ongoing responses to outbreaks as they unfold. These forms of ‘stamp-it-out’ strategies may include the implementation of regional changes in ‘Alert Levels’ (i.e., mandated mask use, reduced gathering sizes, workplace and school closures).

Network approaches can be used to provide detailed accounts of how individuals are connected and the interaction contexts in which they operate, and thus help inform these prepare-for-it and stamp-it-out strategies. Networks can be created by summarising connections between individuals in society depending on whether they share an interaction context where disease transmission could take place, such as having the same workplace or school. Creating a network of this size and detail is now possible with the advent of sources of ‘big data’ which allow researchers to document, explore, and interpret potential interaction contexts at national level.

In Aotearoa New Zealand, for example, individual-level micro-data is available that details physical places of employment as well as the schools in which students are enrolled. Previous research has identified both of these contexts as key environments where disease transmission takes place. Thus, there is significant utility of these data on workplace employment and education enrolment to inform strategic responses to outbreaks of infection disease. While confidentiality rules associated with the use of this individual-level data can introduce some limitations, these data can be reported on at an aggregated level to highlight the connections present between different geographic regions. Using these data, we are able to create a network of ‘co-incidences’, and detail the ways in which different areas of Aotearoa New Zealand are connected.
The following study, and associated web-based Shiny application, provides a detailed summary of how around 2000 different geographical areas of Aotearoa New Zealand, defined as Statistical Areas (SA2s), are connected to one another based on the shared interactions of their inhabitants across different work and school contexts. The Aotearoa Co-incidence Network (ACN) provides a nationally representative network where individuals are connected through all workplaces and schools. Creating a network with this structure can be a complex process. However, the following study makes use of a methodology that simplifies the network structure in a way that is computationally efficient and maintains the information required to inform strategies to mitigate potential disease transmission. We are able to not only detail the specific connections between different SA2s, but also explore properties of the ACN to identify SA2s and communities of SA2s that are most at risk of transmission.

While understanding which areas of Aotearoa New Zealand are most at risk when it comes to transmission, in terms of equity it is also important to identify which areas may be most vulnerable in terms of health/adverse complications should an outbreak occur. We make use of a separate data set informed by Aotearoa New Zealand Ministry of Health guidelines, provided by Wiki, Marek, Hobbs, Kingham and Campbell (2021), to highlight spatial vulnerabilities to COVID-19. These vulnerabilities are considered in terms of age (i.e., age 65+ being most vulnerable), long term health conditions, and socio-economic factors. By cross-referencing our findings regarding SA2s which have a higher risk of transmission with Wiki et al.’s findings on vulnerability, we identify specific geographical locations that should be provided with increased support to contribute to an equitable response to COVID-19.

Methodology

Data

The source of data for the co-incidence network is obtained through the Aotearoa New Zealand Integrated Data Infrastructure (IDI). The IDI is a collection of government data sets, operated by Tauranga Aotearoa Statistics New Zealand, containing micro-data from a range of sources linked at the level of individuals for the population of Aotearoa New Zealand. The ACN is built from data regarding individuals shared employment in workplaces and enrolment in schools. Given the various group nodes we include in the network, we draw upon several different data sources. We are able to derive information on nodes representing individual and dwellings from the 2018 census. For workplace nodes with employee information, we use Inland Revenue tax records. These records contain all employment records for an individual, allowing for possibility to represent individuals with multiple jobs. We obtain data on schools school enrolment data provided by the Ministry of Education. This includes information on primary school students up to high school (ages 5 to 17). Our data is limited in that it does not include other sources that are harder to obtain. For example, inhabitants from different SA2s may also interact in community events (e.g. supermarkets), on public transport, or at large public gatherings (e.g. concerts). We do not model these interactions, but instead point to a separate project which does aim to do this. Despite the limitations of the data used, previous research has identified workplaces and schools as key contexts for infectious disease transmission, highlighting the utility of the ACN.

Data provided by the IDI (e.g., census and tax records) can only be accessed in a secure data-lab environment, and in order to bring any of these data into the public domain various steps are required to ensure that any single individual or business are not identifiable. There are numerous rules dictating how data must be transformed to ensure confidentiality. For the ACN, we structure our data as an edge-list, where one geographic region is connected to another region via a weighted link that corresponds to the number of shared connections inhabitants have through either working in the same workplace (physical location), or through enrolment in the same school. Weights are suppressed when cell sizes are too low (when individuals or underlying dwellings in the cell is fewer than 6), and each individual weighting is randomly rounded to base 3. While random rounding is designed to preserve total counts and keep distributions relatively the same, suppression of values below 6 means that information will be lost regarding rarer connections. This may limit the use of the ACN for a limited number of the smallest rural areas, and smaller workplace sectors and schools where there are fewer individuals.

The geographic regions we use to partition Aotearoa New Zealand are the Statistical Area 2 units from 2018 (henceforth referred to as SA2s). SA2s are a part of the statistical geography hierarchy defined by Statistics New Zealand, and contain a population numbering from fewer than 1,000 individuals (in more rural SA2s) to over 4,000 individuals (in more urban SA2s). In the current study, we exclude SA2s defined as belonging to an ‘Area Outside Territorial Authority’ (these mainly consist of people living at sea) or the Chatham Islands (an isolated set of islands east of the South Island with a population of 600 people). This leaves 2,147 SA2s in the final dataset.

Methods

We begin by constructing a bipartite network (a network of two different node types) consisting of dwelling nodes in one set, and workplace and school nodes in the other set. Each of these nodes has specific attributes. Dwelling nodes have a geographic location, workplaces have a specific industry sector (ANZSIC06), and schools have a type (primary, high school, intermediate or composite). We create edges between the dwelling nodes and the workplace and school nodes where individuals from that dwelling are employed or enrolled. This creates a network, as illustrated by the sketch in Figure 1:A.

1. Not Externally Peer Reviewed
To simplify this network, we project it onto the dwelling nodes. In simple terms, this process involves drawing direct edges between dwellings that were originally connected by a pair of edges linking them to a shared workplace or school. This step is represented in Figure 1:B. In addition to making the network simpler, a benefit of this projection is the fact that it removes workplace and school nodes from the network, allowing them to remain confidential. The confidentiality of workplaces and schools (as well as individuals) is a requirement of extracting data from the IDI. It also allows us to make the regions corresponding to an individual’s place of usual residence the focus of the analysis making it possible to directly compare with vulnerability data.

The final step involves aggregating edges, between pairs of regions, at the level of the geographic regions in which dwellings are located. This is highlighted in Figure 1:C. This step aggregates edges between dwellings located in both different geographic regions (i.e., edges in C connecting two different squares), and also edges between dwellings located in the same geographic location (i.e., the self-loop edge in the top left of C). For more information regarding the processing of data, see the supplementary material (Appendix B).

The ACN in itself provides a highly insightful tool for understanding how Aotearoa New Zealand is connected through employment and school enrolments. On a basic level, understanding how one specific geographic area connects to other parts of Aotearoa New Zealand is extremely useful if there happens to be an outbreak of infectious disease in that area. Specifically, this tool can inform policy and decision makers in terms of intervention strategies for pursuing elimination of an outbreak, such as the ‘stamp-it-out’ strategy pursued in Aotearoa New Zealand. The ACN contributes to this strategy by providing an understanding of which other areas may be at potential risk of onwards transmission resulting from interactions with individuals from an area that has a known outbreak. We are also able to explore the structural properties of the ACN to glean further insights about which SA2s are the most well-connected, how connections differ between urban and rural areas, and which regions tend to be more closely connected.

In addition to providing an indication of the strength of connection between two specific SA2s, we also explore the structural properties of the ACN to highlight patterns of connections between SA2s, and highlight which SA2s are the most connected in Aotearoa New Zealand. We explore the use of community detection and centrality measures to identify specific communities of spatial areas that may be used to define regional boundaries based on transmission risk, and further our understanding of areas that are most at risk in terms of transmission.

Structural Properties of the ACN

The ACN has consists of a single connected component of 2147 nodes (each representing an SA2 geospatial unit) connected by 669,878 edges. When using all types of connections between SA2s, the median number of connections is 30 [lower quartile: 3, upper quartile: 266], with a minimum connection weight of 1 (i.e. a single pair of individuals sharing a workplace or school), and a maximum connection weight of 46,645 (i.e. 46,645 pairs of individuals spread across a set of shared workplace or school interaction contexts). While the range of connections weights appears large, the manner in which the network is structured explains how the weight of connection can increase quadratically if many individuals from a pair of SA2s share the same workplace or go to the same school. For example, if 100 students living in SA2, go to the same school as 100 students from SA2, the connection weight is 100×100 (i.e., each of the 100 students from SA2, connected to each of the 100 students from SA2), giving 10,000 potential interactions. For more details on network properties, see the supplementary material (Appendix B).

Community Detection

While many insights can be gained by exploring each of the connections that single SA2s share with their neighbors, further analysis can be done to simplify the network in a way that summarises the broader patterns of connections in the network. One such method, community detection, allows us to partition the network into different communities. Each of these communities represents a cluster of SA2s that tend to be more strongly connected to other regions within the same community, than they are to SA2s in other communities. Partitioning the ACN into these communities is a useful technique for reducing it to a manageable size and providing an overview of how different areas are connected. A key benefit of this analysis is that it can offer a heuristic for defining the extent of regional based interventions, should an outbreak occur. For example, if there is an outbreak that emerges in a particular SA2, we may recommend applying an intervention for the SA2s that have been classified in the same community and restricting travel between SA2s in that community and those located outside it. We would recommend this action because the SA2s within the community are likely to be at a higher risk of onward transmission due to their higher level of connections. Conversely, the number of links between SA2s in that community to SA2s outside it is relatively low, meaning that if travel across the boundary of the community is restricted then it is likely to impact fewer people than alternative placements of a travel boundary.

There are many methods of community detection, but we focus on methods that employ modularity maximisation. This method involves dividing the network into alternative partitionings and then selecting the partitioning which maximises the...
Figure 1. **A. A representation of the Aotearoa Co-incidence Network**, highlighting how connections occur between dwellings in different geographic regions. This first illustration highlights the manner in which dwellings in one region can share connections with dwellings in different regions through enrolment in the same school. A co-employment network takes the same structure, only with a workplace as the central node in the place of a school. **B. Projection of A.** The second illustration shows how we can simplify the network by focusing on the indirect connections shared by dwellings based on the underlying connection through the school (or workplace). **C. Aggregated to the Level of Region.** To simplify the network even further (and remove confidential information on dwellings), we can aggregate up to the level of region. In this case we can see how the blue region has two links to other domains, and a self-loop. This is because the blue region contained two dwellings connected to the school in the centre of A, while other regions contained only one. NB. In practice, connections will be shared between regions via multiple schools and multiple workplaces, and the simplified network C will contain edge weights representing the aggregate of all of these different connections.
modularity — the ratio of the number of edges within groups relative to those between groups.

In the current study, we considered various community detection algorithms that employ modularity maximisation. We limited our tests to three community detection algorithms suitable for a network the size of the ACN (over 2000 nodes). These were Louvain, Fast and Greedy, and Infomap. Each of these achieved similar levels of modularity. Two of the these, the Louvain and Fast and Greedy community detection algorithms, identified the same 11 communities, each with a modularity score of 0.69. The other algorithm, Infomap, identified 32 communities with a modularity score of 0.68. While Infomap detected different communities to the other two algorithms, visualisation of these communities shows that similar partitions exist in all cases. The main point of difference is that the Infomap algorithm further partitioned the 11 communities found by the Louvain and the Fast and Greedy algorithms (Appendix C, Figure 16). For the purposes of this paper we will report the findings from the Infomap community detection on the basis that it provides more granular information but for a similar modularity (0.68 vs 0.69) and hence for a similar quality of partitioning into connected regions. We also note that it is non-trivial that the community detection algorithms should all identify collections of regions that are, with very few minor exceptions, spatially contiguous. The same methods applied to a similar network but with SA2s linked by distance weighted centroid–centroid distances when they share a land transport connection does not produce the well defined, contiguous communities observed here.

Centrality

Partitioning the network according to which SA2s are more or less connected to one another allows us to determine potential regional boundaries in the case of an outbreak of disease transmission. However, community detection does not tell us anything about which areas are potentially the most likely to have an outbreak spread to them, given an arbitrary initial location of an outbreak. In order to find out which SA2s are most at risk of transmission spread, we explore the centrality of the SA2s in the network. Centrality refers to the *importance* of the SA2 in the network in terms of the number and pattern of connections it shares with other areas.\(^1\)

Previous studies investigating centrality in human flow networks have employed PageRank as an indicator of the importance of a geographic location in disease transmission.\(^2\,\,3\) There are a number of reasons why PageRank might be an appropriate choice of centrality measure as a proxy for transmission risk. PageRank is able to consider the weights of connections between SA2s, the fact that our network is not directed, and it is commonly used.\(^4\) Theoretically, PageRank is also a good proxy measure for transmission risk since it considers not only the connections from one SA2 to its neighbours, but also the connections from those to next-nearest neighbour SA2s and so on. While the other measures of centrality mentioned previously may also consider these longer range connections, PageRank does so in a way that distinguishes SA2s that share more connections with highly connected areas. PageRank does this by deriving the centrality score from the neighboring SA2s in a way that is proportional to the number of connections (their degree) from that neighboring SA2. As outlined by Newman,\(^1\) the vertices (or SA2s in the current study) that are connected to many others will pass only a small amount of centrality on to neighboring SA2s, even if the centrality of that SA2 is high. In terms of our network, ensuring that areas with high centrality only pass on their centrality proportionality is an important condition. Not doing so may obscure areas that have many connections to many areas of higher transmission risk.

One way of testing which centrality score is most useful as a proxy of transmission risk is by comparing the qualitative results it produces with those from empirical evidence of transmission spread. Based on what has been observed for the spread of COVID-19, we would expect urban areas to be over-represented in terms of transmission risk, while rural areas tend to be safer.\(^5\,\,6\) We find that each of the centrality measures we tested reflected this trend, with the exception of betweenness centrality which measures the probability of a node being on a path between an arbitrary pair of nodes, without considering the probability of transmission occurring between those two nodes (see Appendix D, Figure 17), for more information.

Vulnerability

Understanding the structural properties of the ACN, such as the centrality of different SA2s, allows us to see which areas have the highest risk of transmission. As described above, this knowledge may be highly informative when it comes to strategies to mitigate the impacts of disease as it highlights areas that need to be supported in terms of resources to prevent transmission spread and reduce spread should an outbreak occur. However, we also need to consider how vulnerable an area would be should an outbreak occur. In an effort to see potential strategies through an equitable lens, we shift our focus to highlight specific areas that have both high transmission risk and high vulnerability to an outbreak, as defined by New Zealand’s Ministry of Health.\(^7\)

We obtained data on vulnerability at SA2 level from Wiki et al.,\(^8\) who calculated vulnerability across Aotearoa New Zealand in terms of health, socio-cultural, and socio-economic factors. Long-term health conditions (LTCs) were sourced from the National Minimum Dataset (NMDs) for the period 2011–2016. LTCs included in this study were cancer, cardiovascular conditions, diabetes, renal conditions, and respiratory illnesses. Ethnicity is also an important consideration as Māori and Pacific populations are likely to experience higher levels of risk at an earlier age than Pākehā/European/Other ethnic groups. As outlined by Wiki et al.,\(^8\) this is partly due to the fact that chronic health conditions and co-morbidities are often experienced at an earlier age for these ethnic groups. Socioeconomic deprivation was based on the deprivation decile provided by the
New Zealand Deprivation Index (NZDep2018)17. Importantly, this measure also captures living conditions, as it measures bedroom occupancy threshold (i.e. overcrowding) and damp/mould, which are known contributors to a higher risk of COVID-19 mortality5. Due to the strong association between COVID-19 vulnerability and age, each of these factors is combined with the percentage of individuals over 65 years to generate a score of vulnerability.

To understand which SA2s have both high transmission risk and high vulnerability, we cross-reference SA2s and identify areas that have high scores on both dimensions. We create a new bivariate categorical variable which takes on a value determined by the SA2 scores of transmission risk and vulnerability, split into tertiles. Figure 2 provides an example of how areas of vulnerability and/or transmission risk are highlighted. In simple terms, if an SA2 scores in the bottom third of all SA2s in terms of both dimensions, they will be assigned a value of \textit{A}. If an SA2 scores in the top third in terms of transmission risk, but in the bottom third in terms of vulnerability, they will be assigned a value of \textit{F}. When it comes to illustrating these data on a map, areas of high transmission risk will be coloured blue, areas of high vulnerability will be coloured red, while areas that are high on both dimensions will be coloured purple. We report distributions at the level of Territorial Authority, which is the geospatial unit one step above SA2 in terms of resolution.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{bivariate_legend.png}
\caption{Bivariate Legend. The above legend shows the allocation of values at the intersection of vulnerability score and transmission risk. SA2s labeled \textit{A} are low in terms of both vulnerability and transmission risk, those labelled \textit{F} (coloured blue) have higher levels of transmission risk, those labelled \textit{D} (coloured red) has higher vulnerability, while those labelled \textit{I} are high in terms of both dimensions.}
\end{figure}

\section*{Results and Discussion}

The final co-incidence network is available to explore in the Shiny app1. Figure 3 presents the example of connections shared between central SA2s in Auckland, Wellington and Christchurch and other SA2s. In this example, we can see that the majority of connections are made to SA2s in close proximity to the selected SA2, with fewer connections as distance increases. This is a common trend across Aotearoa New Zealand and reflects the fact that individuals are likely to be based in geographic locations close to their place of employment or educational enrolment. With that being said, the ACN is able to reveal further details that are not so obvious. For example, in the case of Wellington Central, we do see a significant number of connections to the north of the South Island, presumably capturing people who share a place of employment on inter-island ferries that connect these two regions.
Connections from City SA2s

Figure 3. Connections from Queen Street (Auckland), Wellington Central (Wellington), and Christchurch Central (Christchurch). The map presented above shows all of the connections shared between SA2s centrally located within Auckland, Wellington and Christchurch and other SA2s. Increased connections are denoted with darker green shades. In this example, we can see that the majority of connections are made to SA2s in close proximity to the selected SA2, with fewer connections as distance increases.

Community Detection

The Infomap community detection algorithm detected 32 different communities on the ACN. The resulting communities are presented below in Figure 4. Figure 4 highlights the geographic communities that are present when we consider the connections that individuals share through co-employment in the same workplaces, and co-enrolment in the same schools. Importantly, these communities strongly reflect established TA boundaries with a few exceptions. There are some instances where the boundaries of the communities do not line up with established TA boundaries. Firstly the Auckland community extends further south than the Auckland TA boundary, to SA2s such as Port Waikato-Waikaretu and Maramarua. Secondly, the TA of Ruapehu is split across the middle along the boundary of National Park and Tangiwai. Westland TA is also split along the border of SA2s Waitaha and Westland Glaciers-Bruce Bay. Finally, Ashburton TA is also split, such that Ashburton Lakes (an SA2 located between Mount Sunday, Mount Hutt, and Mount Barrosa) is included in the neighboring community that contains Christchurch, Selwyn and Hurunui.

While there is no reason per se for the regions identified by our community detection method to match the bureaucratically defined boundaries of Territorial Authorities (TAs), the common definition of TAs as regions based on community interests and roading access is not entirely dissimilar to the concept of communities formed from areas where people are likely to interact through work or education. The extended southern border of the community centered on Auckland, with respect to the Auckland TA is explained by the high level of commuting that occurs from regions south of Auckland. It is perhaps worth noting that during August 2020 community outbreak of COVID-19 in Aotearoa New Zealand when a regional level lockdown was first applied to Auckland TA, it was found that the regional intervention caused significant disruptions for workers commuting across the southern TA border. The position of this southern border was adjusted, to approximately the location of the southern Auckland border in the ACN communities during a second regional lockdown in February 2021. The other two regions (Ruapehu and Westland) where there are notable distinctions between the ACM communities and the TA boundaries are likely to be explained by significant features of natural geography which reduce connectivity between these neighboring SA2s.
Figure 4. Aotearoa Co-incidence Network Communities. This map highlights geographic communities that are detected by the Infomap community detection algorithm when we consider the connections that individuals share through co-employment in the same workplaces, and co-enrolment in the same schools. Territorial Authority (TA) boundaries are superimposed with black lines. We find much in common with the overlap between TA boundaries and the boundaries of the detected communities, although the communities cover the area of multiple TAs. Importantly, this map highlights the fact that in reality TAs often share many connections.

Centrality

We used PageRank centrality to determine which SA2s are the most connected in Aotearoa New Zealand. Figure 5 shows a map of Aotearoa New Zealand according to this transmission risk. We find that major urban areas tend to have higher levels of transmission risk compared to rural areas (see Figure 6: D). The majority of SA2s with PageRank scores in the 30th percentile are classified as “Rural other”, while the majority of SA2s with PageRank scores in the 60th percentile and higher are classified as major urban areas.
Figure 5. Transmission Risk Through PageRank Centrality. The above map presents the transmission risk as determined through PageRank centrality for SA2s across Aotearoa New Zealand. Increased transmission risk (higher page centrality) is denoted with darker colours. The Territorial Authorities in focus represent (from North to South) Auckland, Hamilton, Wellington, Christchurch, and Dunedin. This map highlights urban areas as having increased transmission risk over more rural areas.

Figure 6. Distribution of PageRank by Urban/Rural Classification. This shows the proportion of SA2s classified according to Urban/Rural definitions by PageRank deciles. The deciles indicate the percentile in which the PageRank for a specified SA2 falls; a decile of 1 presents SA2s that have PageRank scores in the lowest 10%, while a decile of 10 presents SA2s that score in the 90% or higher.
To gain more insight into which areas of Aotearoa New Zealand are higher in terms of transmission risk, we show the distribution of PageRank across Territorial Authorities (TAs; see Figure 7). Wellington, Hamilton, and Auckland (specifically Auckland District Health Board) tend to be areas of high transmission risk. This is unsurprising given that these areas tend to be more densely populated and connected (see supplementary material, Figure 15). Hamilton especially tends to have pairs of SA2s with high connection rates - i.e., lots of people per SA2s working in the same location. The density of these connections suggests that transmission risk is especially high and that an outbreak in this area may spread especially quickly before an Alert level change. Surprisingly, Auckland does not have the highest level of transmission risk on average, although this may be explained in terms of the high level of variability in connections across Auckland, as well as potential data quality issues with at-risk populations from Auckland that are missing from Census 2018 data.

Vulnerability

While centrality provides an indication as to which SA2s have the highest risk of transmission, understanding which of these SA2s would be most vulnerable to an outbreak in terms of age, long term health conditions, ethnicity, and deprivation can facilitate an equitable response from governmental, iwi and community support systems. By cross-referencing SA2 centrality scores with the measures of vulnerability first outlined by Wiki et al. (2021), we classify points of focus for a public health response to disease outbreaks such as COVID-19. Figures 8 and 11 highlight regional differences at the intersection of transmission risk, health and socio-economic vulnerability. We visualise the distribution of transmission risk and vulnerability across TAs to explore geospatial patterns on a broad level (these distributions are also presented by District Health Boards in Appendix E, Figures 19 and 20). In terms of the combination of transmission risk and health vulnerability (Figure 10), we find that Invercargill, Whangarei, and Whanganui tend to have a distribution of SA2s with higher scores. Waitomo, Mackenzie, and Tararua tend to have a lower distribution on this score. Auckland TA contains SA2s that vary in terms of their transmission risk and vulnerability. While the majority of SA2s in Auckland have high transmission risk, some areas are more vulnerable than others. As highlighted in Figure 9, areas in central SA2s tend to have less vulnerabilities despite high transmission risk, while areas in South Auckland and along the eastern Wait mara Harbour have increased health vulnerabilities. When health vulnerabilities are considered without age information, the vulnerability in West and South Auckland is even greater (see supplementary material Figure 18).

In terms of the combination of transmission risk and socioeconomic vulnerability (Figure 11), we find that Invercargill, Napier and Whangarei tend to have a distribution of SA2s with higher scores. Mackenzie, Waikato, and Queenstown-Lakes tend to have a lower distribution on this score (see Figure 12).

These results show that Wellington, Hamilton, and areas of South Auckland which had high distributions in terms of transmission risk, remain particularly vulnerable to outbreaks of disease - especially in terms of socioeconomic factors. This analysis also highlights other areas, such as New Plymouth, Invercargill and Tauranga, as regions that would be particularly vulnerable in terms of the combination of transmission risk and both vulnerability factors. Closer inspection of the distributions of transmission and vulnerability scores reveals a bimodal distributions for many areas, such as New Plymouth. This indicates that a selection of SA2s in these TAs appear to have a high transmission risk and these areas within the TA may be particularly vulnerable. Use of the Shiny app helps highlight these areas. For example, in New Plymouth this area of particular vulnerability is located in the urbanised areas, and includes SA2s from Spotswood to Fitzroy-Glen Avon. In contrast, the rural parts of New Plymouth TA do not have the same vulnerability.

The case of New Plymouth highlights an important point of consideration. The current report summarises areas of transmission risk and vulnerability on the broad level of TA, but the distributions shown in Figures 10 and 12 are wide and variable. For this reason we encourage readers to explore the app and underlying data itself to draw further insights into what areas may be most at risk of an outbreak and vulnerable to it should it occur. To provide some further examples of the insights that can be gained by using a finer geospatial resolution, we highlight two further cases in more detail: South Auckland, and Māori Hill in Dunedin.

South Auckland comprises a set of SA2s in the Auckland TA, and are characterised as urban areas SA2s with a high proportion of individuals identifying as Māori and/or Pacific. SA2s in South Auckland tend to have high levels of transmission risk. Furthermore, many of these SA2s are vulnerable in terms of health and socioeconomic factors. However, the percentages of individuals older than 65 in these areas tend to be lower than 10%. Considering the high proportion of individuals identifying as Māori and/or Pacific in South Auckland, and the fact that the age vulnerability for these groups to COVID-19 is lower, means that South Auckland should be considered highly vulnerable to an outbreak (see Appendix E, Figure 18).

Māori Hill scores highly in terms of transmission risk, and this may relate to the high number of workers employed in the health sector. Māori Hill contains the Dunedin’s largest private hospitals. This increases potential transmission risk, and combined with the high number of individuals over 65 and a high health vulnerability score, this area is thus still vulnerable. However, inhabitants of this SA2 also tend to be wealthier, reducing their socioeconomic vulnerability.
Figure 7. Distribution of PageRank by Territorial Authority (TA). Y axis is arranged according to mean PageRank per TA. SA2s located in Auckland TA have been split into its three District Health Boards.
Figure 8. Health Vulnerability and Transmission Risk. The colour map indicates area of low health vulnerability and low transmission in grey, areas of higher health vulnerability in red, and areas of higher transmission risk in blue. Areas of high health vulnerability and transmission risk are coloured purple.
Figure 9. Health Vulnerability and Transmission Risk for Auckland. The colour map indicates area of low health vulnerability and low transmission in grey, areas of higher health vulnerability in red, and areas of higher transmission risk in blue. Areas of high health vulnerability and transmission risk are coloured purple.
Figure 10. Distribution of Transmission Risk and Health Vulnerability by Territorial Authority (TA). Grey represents SA2s with low transmission risk and vulnerability, red represents low transmission risk and high vulnerability, blue represents low vulnerability and high transmission risk, and purple represents SA2s with high scores on both dimensions.
Figure 11. Socioeconomic Vulnerability and Transmission Risk. Colour map indicates area of low socioeconomic vulnerability and low transmission in grey, areas of higher socioeconomic vulnerability in red, and areas of higher transmission risk in blue. Areas of high socioeconomic vulnerability and transmission risk are coloured purple.
Figure 12. Distribution of Transmission Risk and Socioeconomic Vulnerability by Territorial Authority (TA). Grey represents SA2s with low transmission risk and vulnerability, red represents low transmission risk and high vulnerability, blue represents low vulnerability and high transmission risk, and purple represents SA2s with high scores on both dimensions.
Limitations

While the methodology and results provided by the ACN are highly insightful and can inform Aotearoa New Zealand’s response to COVID-19, there are some areas where we believe further progress could be made. Firstly, given that IDI data are represented at area level, and thus our data are presented at area-level, no conclusions can be made at the individual level. This is especially relevant given data quality issues present in Aotearoa New Zealand’s 2018 census data, which contained a significant level of missing data regarding individuals’ dwelling or usual residence, especially for the Māori and Pacific Island sub-populations. It is also important to emphasise that the ACN looks specifically at the number of connections individuals share through workplaces and schools only. The ACN will thus undercount the ‘complete’ number of connections shared between two geographic regions where there is a lower number of school-aged individuals, or higher levels of unemployment. Other research is currently underway to create a more complex network that considers a wider range of data sources and addresses equity issues with these sources (8).

Furthermore, since the input data used to form the ACN are also from 2018, this means that the ACN may not be representative for the current (2021) New Zealand population. We use census data as our source of individuals’ location and dwelling information, and while workplace and school information is available at a more recent date, we have to source these data from 2018 otherwise network edges would not be representative or consistent. The current work is completely reproducible for researchers who have access to the IDI, which means that the ACN can be updated with the release of the next census in 2023.

One such area that further progress on the ACN can be made is the inclusion of additional sources of workplace or education data. For example, we do not use information regarding tertiary enrolments, even though it is available in the IDI. This is due to uncertainty about what these data truly represent when it comes to representing interaction contexts in the network. Further work is needed to establish a reliable method of linking tertiary students to a physical location with the IDI. Unlike high schools which tend to have a single location with all students on location at the same time, many tertiary institutions have multiple campuses with students attending at different times of day. There would also need to be efforts made to filter out specific tertiary courses that are conducted entirely online or by correspondence.

The inclusion of information regarding workplace and school location would be highly useful in modelling the trajectories of outbreaks. However, this was not possible in the current work since the inclusion of this information would break the assurance that the confidentiality of individuals, workplaces, and schools would be maintained. Furthermore, the resulting network would be much more complex and would require significant computing power and sophisticated analysis. Other work is currently underway to create a fully representative multilayer network of Aotearoa New Zealand, the Populated Aotearoa Interaction Network (PAIN). The PAIN includes representations of individuals, workplaces, schools, and community events. With that being said, the relative simplicity and efficiency of the ACN outlined in the current study, in combination with the insights that it provides, is a big strength of the current approach and its methodology.

Conclusion

The current report used data on individuals’ employment and school enrolments to create a network of co-incidences: the Aotearoa Co-incidence Network (ACN). Exploration of the connections that make up the ACN1, as well as the structure of the network itself, provides a useful means of understanding transmission risk in Aotearoa New Zealand. The ACN facilitates the identification of locations of interest should there be an outbreak of infectious disease in a particular geographic area. Through further analysis of these connections, we also reveal regional communities, that, while comparable to Territorial Authorities, offer new geographic boundaries that may inform the regional application of Alert Level changes should they need to occur. Through use of PageRank centrality, a measure of how ‘important’ different areas in the ACN are in terms of the connections they share, we also gain an idea of the transmission risk associated with different areas. We find that the highest risk regions for transmission are located in urban areas, especially Hamilton, Wellington, and Auckland. Areas of low-transmission risk include Thames-Coromandel, Mackenzie, and Waitomo. Finally, we investigated how this transmission overlaps with measures of geospatial vulnerability. In terms of the combination of transmission risk, health, and socioeconomic factors, we find that areas such as Invercargill, Napier, Whangārei, as well as Hamilton, Wellington, and South Auckland are particularly vulnerable.

Acknowledgements

We would like to thank Adrian Ortiz-Cervantes for his help with structuring the workplace queries for the Census and Inland Revenue (IR) data tables inside the Integrated Data Infrastructure (IDI), managed by Statistics Aotearoa New Zealand. We would also like to acknowledge Dr Jesse Wiki for making the data regarding vulnerability open access and for sharing such valuable data for use in the current study. Finally, we would like to thank S. Datta, N. French, M. Luczak-Roesch, M. McLeod, A. Mizdrak, F. Morgan, and M. Parry for providing an initial internal review of this work.
Disclaimer

The results in this paper are not official statistics. They have been created for research purposes from the Integrated Data Infrastructure (IDI), managed by Statistics Aotearoa New Zealand. The opinions, findings, recommendations, and conclusions expressed in this paper are those of the author(s), not Statistics NZ. Access to the anonymised data used in this study was provided by Statistics NZ under the security and confidentiality provisions of the Statistics Act 1975. Only people authorised by the Statistics Act 1975 are allowed to see data about a particular person, household, business, or organisation, and the results in this paper have been confidentialised to protect these groups from identification and to keep their data safe. Careful consideration has been given to the privacy, security, and confidentiality issues associated with using administrative and survey data in the IDI. Further detail can be found in the Privacy impact assessment for the Integrated Data Infrastructure available from www.stats.govt.nz.
References

A Processing Data

Important Note: Any information presented in the following tables is made up, and does not represent any real example found in IDI data.

A.1 Dwelling Data

We begin by pulling the full list of individuals from Census 2018, with their recorded dwelling of usual residence, and the SA2 (and TA) where the dwelling is located (see “getDwellings_2018_census.sql” for SQL query used). This output is summarised in Table 1.

<table>
<thead>
<tr>
<th>snz_uid</th>
<th>ur_dwl_id</th>
<th>ur_sa2</th>
<th>ur_ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>n ~ 4,300,000 (primary key)</td>
<td>n ~ 1,600,000</td>
<td>100100-400101</td>
<td>01-76</td>
</tr>
</tbody>
</table>

Table 1

A.2 Workplace Data

We then pull a list of individuals present in Inland Revenue (IR) data for the month of census 2018 (March). This month is used to ensure that workplace information most accurately reflects the list of individuals in the 2018 census. More specifically, this data covers a selection of individuals who have a recorded relation to a Permanent Business Number (PBN) where the “return_period_date” in IR data was in March 2018, the record of income is for “W&S” (Work & Salary), and the PBN had an associated industry classification (ANZSIC06). This output is summarised in Table 2.

<table>
<thead>
<tr>
<th>snz_uid</th>
<th>ir_ems_pbn_nbr</th>
<th>ir_ems_pbn_anssic06_code</th>
<th>sa2_code</th>
<th>ta_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>n ~ 2,100,000 (primary key)</td>
<td>n ~ 1,990,000</td>
<td>A-S (1 level)</td>
<td>100100-400001</td>
<td>01-76</td>
</tr>
</tbody>
</table>

Table 2

where “sa2_code” and “ta_code” are the SA2 and TA where the PBN is placed. Note - the population is not the same as the population obtained in the census data. This is partly because many people (especially children) will not have a recorded place of work, and also many individuals with jobs may not necessarily have records present in IR, or vice versa in census.

A.3 Education Data

We finally pull the list of individuals present in data provided by Ministry of Education (MoE). This involves students from primary, intermediate, and secondary schools. We draw on the pool of students who were enrolled in these education institutions during census month 2018. This output is summarised in Table 3.

<table>
<thead>
<tr>
<th>snz_uid</th>
<th>provider_code</th>
<th>type</th>
<th>sa2_code</th>
<th>ta_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>n ~ (primary key)</td>
<td>n ~</td>
<td>Primary, Intermediate etc.</td>
<td>100100-400001</td>
<td>01-76</td>
</tr>
</tbody>
</table>

Table 3

where “type” refers to the type of school the individual attended (e.g., ECE, primary, university etc.) and “sa2_code” and “ta_code” refer to the location of the educational institution.

A.4 Restructuring Input Data

To achieve the goal of creating a network of dwellings connected by co-incidence in employment and school enrolment, we restructure our input data so that they are joined together. We do this by doing a inner-join of the dwelling data to the workplace data, which means that a data frame is produced which only includes individuals who appear in both the dwelling data and the workplace. This takes the form of Table 4.

<table>
<thead>
<tr>
<th>snz_uid</th>
<th>ur_dwl_id</th>
<th>ur_sa2</th>
<th>ur_ta</th>
<th>ir_ems_pbn_nbr</th>
<th>ir_ems_pbn_anssic06_code</th>
<th>sa2_code</th>
<th>ta_code</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>100100</td>
<td>01</td>
<td>Z</td>
<td>A</td>
<td>200200</td>
<td>02</td>
</tr>
</tbody>
</table>

Table 4

Our goal is to produce an edge list, where we have “ur_dwl_id” connected to other “ur_dwl_id”, with a weight of how many shared workplaces are between them. We can do this by restructuring Table D as a bipartite network of dwellings connected to
workplaces. To create this type of network we connect the two different node sets (dwellings vs workplaces) by the number of “snz_uid” that are shared between them. This is summarised in Table 5.

<table>
<thead>
<tr>
<th>ur_dwl_id</th>
<th>ir_ems_pbn_nbr</th>
<th>snz_uid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Z5</td>
<td>X1</td>
</tr>
<tr>
<td>Y1</td>
<td>Z2</td>
<td>X2</td>
</tr>
<tr>
<td>Y2</td>
<td>Z5</td>
<td>X3</td>
</tr>
<tr>
<td>Y3</td>
<td>Z3</td>
<td>X4</td>
</tr>
</tbody>
</table>

Table 5

In Table 5, we can see that “ur_dwl_id” Y1 (Dwelling1) is connected to Dwelling3 through one connection at “ir_ems_pbn_nbr” Z5 (PBNZ5). With the data in this network format, we can then project onto one set of nodes in the bipartite network. In our case, we project onto the dwelling nodes to create a data frame where “ur_dwl_id” connect to other “ur_dwl_id”, with a weight column that indicates how many shared connections these households have. For workplaces, we can break this weight down by the industry sectors of each PBN. This is summarised in Table 6.

<table>
<thead>
<tr>
<th>From_dwl_id</th>
<th>To_dwl_id</th>
<th>Sector A</th>
<th>Sector B</th>
<th>Sector ...</th>
<th>Sector S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Y2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6

Carrying forward the example of Table 6, Dwelling1 would be connected to Dwelling2, through 1 connection at PBNZ5. If PBNZ5 belongs to Sector A, this would produce a weight of 1 for Sector A. Other sectors would have a weight of 0, given these two dwellings share no connections through PBNs in these areas.

We can repeat this same process for the education data. To summarise:

1. Inner join dwelling data to education data (e.g., Table 4)
2. Structure as bipartite network (e.g., Table 5)
3. Project onto dwelling nodes (e.g., Table 6).

Once we have the data frames for workplaces and education structured in terms of an edge list of dwelling nodes and weighted connections, we can use a combine these into one table (see Table 7).

<table>
<thead>
<tr>
<th>From_dwl_id</th>
<th>From_SA2</th>
<th>To_dwl_id</th>
<th>To_SA2</th>
<th>Sector (split into A-S)</th>
<th>Education (split into types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>100100</td>
<td>Y2</td>
<td>200200</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

Table 7

In Table 7, we have the dwelling pairs, with weights (n) indicating the number of shared connections for the two dwelling across Sectors - with multiple columns for Sectors A-S, and across Education, with multiple columns for different Education types. This table allows us to aggregate at whatever level may be useful - we may want to looks at the number of shared connections across specific sectors, or we may want to sum these columns to look at connections at workplaces overall, and the same for schools. Table 7 also includes the SA2 information for each dwelling. This allows us to once more aggregate, this time to a high geographical resolution. Through aggregation we can make this data confidential, and produce Table 8.

<table>
<thead>
<tr>
<th>From_SA2</th>
<th>To_SA2</th>
<th>Sector (split into A-S)</th>
<th>Education (split into types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100100</td>
<td>200200</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 8

Where N is the sum of the individual counts for dwellings (n) for “From_dwl_id” and “To_dwl_id” have been aggregated to the level of SA2.
B Network Properties

Figure 13 shows the degree (the number of connections for each SA2) and node strength (the sum of the weighted connections for each SA2) distributions.

![Figure 13. A. Degree Distribution. B. Node Strength Distribution.](image1)

Figure 14 shows these same distributions, but distributions but separated into the more and less densely populated North Island and South Island of Aotearoa New Zealand, respectively.

![Figure 14. Degree and Node Strength Distributions by Island. A. Degree Distribution. B. Node Strength Distribution. Both plots threshold on edge weight of 100.](image2)

B.1 k-Core Decomposition

Figure 15 shows the coreness of the network, with thresholding on edge weights of 1, 10, 100, and 1000. The coreness of a node in a network is a potential measure of the centrality of that node. The k-core of a network is the sub-graph of the network for which all nodes have a degree of at least \(k \). The k−core of a network is obtained by iteratively removing all nodes connected to fewer than \(k \) edges. After removing these nodes the network is reanalyzed and any nodes that now have fewer
than k edges are also removed. Since this k–core decomposition does not account for the strength of an edge, we compute the coreness of each region, first for links of any weight, and then also for links with weights greater than a threshold of 10, 100, and 1000. The resulting network is one where regions with high coreness are those with a large number of connections to other highly connected regions, and with edge weights greater than some threshold. Identifying the k–cores of the ACN can give some rough idea of the communities of highly connected nodes in the network and identifying the inner-most cores of the network can provide insights into which regions may be deemed as the most influential in terms of disease transmission. In the case of the ACN, we observe that the Auckland and its surrounding regions tend to be the most densely connected. However, arguments have been made that the value of k-core decomposition is more limited in networks that do not have a core-like structure, and other network metrics may be better indicators of node importance.

Figure 15. ACN Coreness by Edge Weight Thresholds of 1, 10, 100, and 1000. Each plot shows the k-core of the ACN with colours representing the size of the components left after removing edges between nodes with fewer than k degree. Darker colours represent more densely connected areas of the ACN.
C Community Detection

Figure 16. Louvain Communities Overlaid with Infomap Communities. The map presented above highlights geographic communities identified by the Louvain community detection algorithm (coloured), with the communities identified by the Infomap algorithm (black lines). Each community detection algorithm partitioned the network into similar geospatial regions. For more information on the community detection methods used, see the supplementary material.

D Centrality

We tested several types of centrality measure to highlight important nodes in the network, and we detail distribution of these measures across urban/rural geographic areas in New Zealand (see Figure 17). We observe that PageRank establishes the clearest partition between urban and rural areas (see Figure 17:D). Betweenness centrality is possibly better suited to identifying bottle-necks in transmission than high risk of transmission. Betweenness centrality (Figure 17: A) displays no clear pattern. We suggest that this is due to the fact that there tend to be fewer connections present in rural areas and hence more bottle-necks which result in higher scores of betweenness. While there are more connections in urbanised SA2s (potentially increasing betweenness), there are also more potential alternative, similar length, pathways between pairs of SA2s which reduces betweenness centrality for urban nodes. The combination of the above may explain the mixed distribution of urban and rural SA2s in terms of betweenness. Other centrality measures tested include Eigenvector (Figure 17: B) and closeness (Figure 17: C), which, similar to PageRank centrality identified urban areas as tending to have higher centrality compared to rural areas.
Figure 17. Comparison of Centrality Measures by Urban/Rural Classifications. The stacked bar plots above show the proportions of urban/rural classifications for each SA2 by the size of their centrality score. The centrality scores have been categorised into deciles, where a score decile of 1 represents scores within the bottom 0-10% (i.e., lowest transmission risk), while decile 10 corresponds to the top 90-100% of scores (highest transmission risk). A Betweenness Centrality. This refers to the extent to which a region is a bottle-neck for paths between other regions. B Eigen Vector Centrality. This defines the centrality of an area in terms of the number of connections it has to other areas, as well the centrality of its neighbors. In this case, it is possible for an area to have high centrality if it has many connections, or it has potentially only one connection to an area that is of high centrality. C Closeness Centrality. This refers to the mean weighted path length a region to all other regions. In our network, we use inverse distance: \(d^{-1} \), where \(d \) is the number of connections from one SA2 to another. This means that SA2s with a higher number of connections will be effectively closer than those with fewer connections. Those areas with a lower mean distance overall are seen as being more central in the network. D PageRank Centrality. This definition of centrality is very similar to Eigen Vector centrality, with the key difference being that PageRank dilutes the influence of neighboring SA2s depending on how many connections that neighboring SA2 has. Thus with PageRank, a neighboring SA2 that has many connections will pass on a relatively smaller centrality score to those connections instead of a high score to them all.
Figure 18. Health Vulnerability and Transmission Risk for Auckland (without including age). The colour map indicates areas of low health vulnerability and low transmission in grey, areas of higher health vulnerability in red, and areas of higher transmission risk in blue. Areas of high health vulnerability and transmission risk are coloured purple.
Figure 19. Distribution of Transmission Risk and Health Vulnerability by District Health Board (DHB). Grey represents SA2s with low transmission risk and vulnerability, red represents low transmission risk and high vulnerability, blue represents low vulnerability and high transmission risk, and purple represents SA2s with high scores on both dimensions.
Figure 20. Distribution of Transmission Risk and Socioeconomic Vulnerability by District Health Board (DHB). Grey represents SA2s with low transmission risk and vulnerability, red represents low transmission risk and high vulnerability, blue represents low vulnerability and high transmission risk, and purple represents SA2s with high scores on both dimensions.