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ABSTRACT

Between February and May 2020, New Zealand recorded 1504 cases
of COVID-19 before eliminating community transmission of the
virus in June 2020. During this period, a series of control
measures were used including population-wide interventions
implemented via a four-level alert system, border restrictions, and
a test, trace, and isolate system. Mathematical modelling played a
key role in informing the government response and guiding
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policy development. In this paper, we describe the development
of a stochastic mathematical model for the transmission and
control of COVID-19 in New Zealand. This includes features such

reproduction number;
elimination; health equity;
infectious disease models;

as superspreading, case under-ascertainment, testing and case isolation; quarantine

reporting delays, and population-wide and case-targeted control
measures. We show how the model was calibrated to New
Zealand and international data. We describe how the model was
used to compare the effects of various interventions in reducing
spread of the virus and to estimate the probability of elimination.
We conclude with a discussion of the policy-modelling interface
and preparedness for future epidemic outbreaks.

Introduction

The COVID-19 outbreak originated in Wuhan China in November 2019 (WHO 2020a)
before spreading globally to become a pandemic in March 2020 (WHO 2020b). The
human population lacks immunity to COVID-19, a viral zoonotic disease with reported
case fatality rates that are of the order 1% (Verity et al. 2020). Many countries have
experienced community transmission after undetected introductions of the disease by
travellers exposed in China. This led to rapid growth of new infections in many countries,
even as China, through the use of strong controls and rapid testing and tracing, managed
to contain the spread of the virus.

As of early July 2020, more than 11 million confirmed cases of COVID-19 have been
recorded globally and over 500,000 have died. Strict lockdowns have been implemented
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by many countries to varying degrees and at different times. Several countries have
experienced a resurgence in case numbers after seemingly managing to contain the
virus. For example, Singapore and later Australia have experienced outbreaks associated
with rapid transmission within high-density housing. The USA and the UK have experi-
enced significant national or regional outbreaks after relaxing lockdown measures.

In New Zealand, border restrictions and strong interventions to maintain physical dis-
tancing were implemented early in the outbreak. Population-wide restrictions were
encoded via an alert system ranging from Alert Level 1 through to Alert Level 4,
which involved strict, legally enforceable stay-at-home orders, and closure of all
schools and non-essential businesses. The Alert Level was progressively raised to Level
2 on 21 March, Level 3 on 23 March, and Level 4 on 26 March, at which time there
were 205 confirmed and probable cases. Together with widespread testing, case isolation
and contact tracing, these measures were successful in containing the outbreak and even-
tually eliminating community transmission.

Restrictions were relaxed in stages starting in late April and ending on 9 June with the
move to Alert Level 1 effectively removing all restrictions on domestic activities, move-
ments and gatherings. Elimination of community cases has so far been maintained via
strict border measures, namely closure of the border to non-residents, and mandatory
testing and 14-day quarantine in government-managed facilities for all arrivals.

New Zealand’s first COVID-19 outbreak

Between 26 February and 22 May 2020, New Zealand recorded 1504 confirmed and prob-
able cases of COVID-19 (Figure 1). Of these, 573 had a recent history of overseas travel
and were considered imported cases, 454 were import-related cases, 389 were domesti-
cally transmitted cases epidemiologically linked to another confirmed or probable case,
and 88 were domestically transmitted from an unknown source. The last domestically
transmitted case was reported on 22 May and the last domestically transmitted case
that could not be traced to a confirmed or probable contact was reported on 30 April.
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Figure 1. COVID-19 cases reported in New Zealand between 26 February and 22 May 2020, showing
cases with a recent international travel history (blue) and without a recent international travel history
(orange) along with changes in alert level and border restrictions.
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Between 22 May and 11 August, there were no reported cases of COVID-19, outside of
government-managed quarantine for international arrivals. On 11 August 2020, a second
outbreak was detected in Auckland which is ongoing at the time of writing.

In total, there were 22 deaths from COVID-19 in the first outbreak, giving a crude
overall case fatality rate (CFR) of 1.46%. The ages of the people who died from
COVID-19 ranged from 62 to 99 years. Of the 1504 cases, 95 (6.3%) required hospital-
isation and 10 (0.66%) were admitted to ICU. These rates may have been affected by the
relatively young, fit demographic of the internationally imported cases and their close
contacts: only 7.7% of all cases were aged 70+, compared to 10.9% of the population
as a whole (see Figure 2). Children are also under-represented in the case data: only
5.5% of cases were aged under 15, compared to 19.4% of the population. For the 89 hos-
pitalised cases with admission and discharge dates recorded, the mean length of hospital
stay was 7.9 days (25th percentile 1 day, 75th percentile 10 days). Out of all cases, 32
confirmed cases (2.1%) were recorded as asymptomatic. This is likely to be an underes-
timate because testing for COVID-19 during this outbreak was predominantly symptom-
based and there was no routine testing of asymptomatic individuals.

Up to 9 June 2020 (when New Zealand moved to Alert Level 1 and testing of inter-
national arrivals was significantly ramped up), New Zealand conducted 298,532 tests
for SARS-CoV-2 (approximately 60 tests per 1000 people) with a positivity rate of
0.4% (Ministry of Health 2020a). The mean time between symptom onset (according
to case recall) and a positive test result being returned was 7.3 days (N = 1108,
SD = 5.9 days).

Contact tracers in regional public health units interviewed confirmed and probable
cases about their contacts during their infectious period, which is usually considered
to be up to 2 days prior to symptom onset. Close contacts are household members
and those with at least 15 min of either face-to-face contact with a case or being
within 2 m of a case in a closed environment; see Ministry of Health (2020b) for a com-
plete definition. A total of 7683 contacts of the 1504 confirmed and probable cases up to
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Figure 2. Age distribution of COVID-19 cases in New Zealand between 26 February and 22 May 2020
in 5-year age bands, split into cases with (blue) and without (orange) a recent international travel
history. Black curve shows the number of cases there would be in each 5-year age band if the
1504 cases were distributed in proportion to the New Zealand population.
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22 May were identified (an average of 5.1 contacts per case). Of the 7683 identified con-
tacts, 6055 were followed up (average 4.0 per case).

Despite the small sample size, the crude observed CFR of 1.46% is consistent with
international data allowing for demography and case under-ascertainment (Verity
et al. 2020). Since the rates of clinically severe infection and death are higher in older
age groups (CDC 2020; Williamson et al. 2020), it is possible that the hospitalisation
rate and the CFR would have been higher if community transmission had become
more widespread in New Zealand.

New Zealand’s largest case clusters were associated with a wedding (Bluff, 98 cases), a
school (Marist College Auckland, 96 cases), a hospitality venue (Matamata, 77 cases),
aged residential care facilities (Christchurch, 56 cases; Auckland, 51 cases), a private
function (Auckland, 40 cases), and a conference (Queenstown, 39 cases). The settings
for these clusters are typical of international patterns of COVID-19 transmission and
superspreading (Adam et al. 2020; Leclerc et al. 2020). They also exhibit one or more
of the ‘three Cs’ (closed spaces, crowded places and close contact) suggested to be associ-
ated with superspreading events (Nishiura et al. 2020). It is notable that in the cluster
associated with a school, the majority of cases (55 out of 96) were in individuals aged
over 20 and, of the 41 cases in under 20s, only 6 were in under 10s. This is consistent
with international evidence on the reduced incidence and transmission of COVID-19
among young children (Boast et al. 2020; Li et al. 2020).

Mathematical model for COVID-19 transmission and control

We developed a stochastic, continuous-time branching process model for the spread of
COVID-19 (Figure 3). Stochastic models are a class of mathematical model that includes
a random element and are defined in terms of the probabilities of certain events occur-
ring. Stochastic models of disease spread have several advantages over their deterministic
counterparts:

¢ Deterministic models break down when the number of cases is relatively small and so
cannot be used to look at questions relating to the elimination of the virus.

 Stochastic models intrinsically allow for random variations in the transmission
process, for example superspreading events or variations in the timing of secondary
infections, symptom onset, testing and isolation. This enables uncertainty in model
outputs to be quantified and the probability of elimination to be estimated.

e Stochastic individual-based models track individual infected cases, so they are more
compatible with data on the number of cases and individual attributes of those
cases such as age, time of symptom onset, hospitalisation status.

e Stochastic individual-based models allow the structure of the transmission tree (Figure
3) to be explicitly tracked. This is essential for models of contact tracing, which require
information on who infected whom.

We developed a stochastic model for COVID-19 in New Zealand that used data on
cases with a recent history of international travel as seed cases. We did not attempt to
predict cases arriving into New Zealand, only the subsequent chains of transmission
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Figure 3. Stochastic, continuous-time branching process model of COVID-19 transmission starting
from single infected seed case (top centre). Each infected individual (blue circles) infects a random
number of individuals generated from the offspring distribution. The diagram shows an example of
a ‘superspreading event’, where a single individual infects a large number of other individuals at
one time.

originating from each imported case. Many imported cases did not infect any other
people in New Zealand, or only infected one or two others, but some imported cases
initiated large transmission trees. The following is a brief description of the model and
its assumptions; see Appendix for mathematical details.

New infections occur as a result of contact between infectious and susceptible individ-
uals and the population is assumed to be homogeneous. We assume that 33% of infec-
tions are subclinical (Byambasuren et al. 2020; Lavezzo et al. 2020; Polldn et al. 2020)
and, relative to clinical cases, these subclinicals are assumed to result in 50% as many sec-
ondary infections on average (Davies et al. 2020). To model random variation among
individuals in the number of secondary infections (e.g. superspreading), each case is
assigned a randomly generated individual reproduction number R; from a gamma distri-
bution with mean Rg;, for clinical cases or Ry, = 0.5Ry;, for subclinical infections, and
dispersion parameter k = 0.5 (Lloyd-Smith et al. 2005; Endo et al. 2020). In the absence
of control measures, the number of secondary infections from individual i is a Poisson
random variable with mean R;.

The generation times (i.e. times between infection of an individual with COVID-19
and onward transmission to secondary cases) are independent, identically distributed
random variables from a Weibull distribution with mean w = 5.05 days and standard
deviation o = 1.94 days. This distribution is based on the estimated times between infec-
tion of 40 source-recipient case pairs (Ferretti et al. 2020). The shape of this distribution
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means that cases are most likely to transmit the virus to close contacts around 5 or 6 days
after infection, and less likely to transmit in the first few days after infection or more than
around 12 days after infection (Figure 4). The incubation period (time from infection to
onset of symptoms) is approximately 5 days on average (Lauer et al. 2020), so this cor-
responds to substantial levels of pre-symptomatic transmission (Ganyani et al. 2020;
Tindale et al. 2020).

Case-targeted control was modelled by assuming that clinical cases self-isolate a
random time after infection that is the sum of the time from infection to onset, modelled
as a gamma distributed random variable (u = 5.5 days, o = 2.3 days, Lauer et al. 2020),
and the time from onset to isolation, modelled as an exponentially distributed random
variable (u = 2.2 days, based on New Zealand case data). Self-isolation reduces
onward transmission by 35% (Figure 4, green curve). After self-isolation, there is a
further delay until a positive test result is returned, which is exponentially distributed
(u = 3.48 days). We assumed subclinical infections did not self-isolate and were not
tested or reported. Population-wide social distancing measures were modelled by redu-
cing the contact rate between infectious and susceptible individuals by a factor of C(t),
with smaller values of C(t) for higher COVID-19 Alert Levels.

Values of model parameters were estimated from published studies or from New
Zealand data (see Appendix Table Al). Using these parameter values, the model’s
effective reproduction number (i.e. the average number of people infected by a single
case) in the absence of population-wide control (C(f) =1) is Ry = 2.4; with
population-wide control, Regr = 2.4C(¢).

times of secondary infections

Infectiousness

| — — time (days)

8 10

o | | |
0 2 4 6

infected isolated
' Tt'so i

'
- -
X 1

Figure 4. Timeline showing the distribution of generation times (time between infection and onward
transmission), which is modelled as a Weibull distribution with mean 5.05 days and standard deviation
1.94 days. The blue curve can be interpreted as the relative infectiousness of a case (i.e. probability of
transmitting the virus to a contact) as a function of time since infection. Red arrows show example
times of new secondary infections. After isolation, the probability of transmission is reduced to a
lower level (green curve). Subclinical infections are not isolated and follow the shape of the blue
curve throughout, but with a lower overall probability of transmission. Time from infection to isolation
Tiso is the sum of the time from infection to symptom onset and the time from onset to isolation.
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Effective reproduction number

The effective reproduction number R.g, is a key measure of a disease’s transmission
potential and the most important parameter in any epidemic model. If R, > 1, the
virus has the potential to cause a large outbreak, while if Rer < 1, the virus will eventually
die out with probability 1. The basic reproduction number R, for COVID-19, for a fully
susceptible population in the absence of any control measures depends on both the bio-
logical characteristics of the virus and the contact rates of the population in which it is
spreading, which vary between and within countries. Reported estimates range from
Ry [95% CI] =0.48 [0.26, 0.88] to 6.91 [6.60, 7.23], with a global average of 3.17 [2.62,
3.84] (Billah et al. 2020). However, interventions including school closures, popu-
lation-wide social distancing, and case-targeted controls, reduce Re to varying degrees.

Directly estimating R.s empirically in real time is difficult because it requires infor-
mation on the number of secondary infections from each infected case, which is
usually not available. The delay between infection and symptom onset, and between
onset and reporting can be over 2 weeks, meaning that the signal from changes in
Alert Level in the official case data is heavily lagged. The size of the reduction in Reg
during New Zealand’s lockdown, in particular, was difficult to predict in advance or esti-
mate in real-time. Indications of the reduction in activity could be obtained from real-
time electronically collected data, such as telecommunications data, transit telemetry
data, point-of-sale bank transaction data, Facebook co-location data, and Apple/
Google mobility data. However, none of these directly measures the outcome of interest,
which is close physical contact between pairs of individuals. We therefore used inter-
national data on case numbers to estimate the effect of various population-wide interven-
tions on Re.

Estimating the effective reproduction number from international data

Numerous methods have been developed for estimating the reproduction number using
mathematical models (Obadia et al. 2012). We used a method by Wallinga and Lipsitch
(2006) to estimate R from data on the number of new daily cases and number of daily
deaths (Dong et al. 2020) in 25 countries or states/provinces. This method calculates Rg
by relating it to the exponential growth rate r of daily new local cases (which we inferred

using log-linear regression of daily new cases over a 10-day window) by

R =1/ f exp(—ra)w(a) where w(a) is the assumed generation time distribution
a=0

shown in Figure 4. It assumes a randomly mixed population undergoing exponential

growth of new local infections arising from domestic transmission - see Binny et al.

(2020a) for details.

We broadly grouped interventions in each location into four levels of increasing strin-
gency, approximately equivalent to New Zealand’s Alert Level framework. We then esti-
mated the reduction in Ry before and after various interventions were implemented
(Figure 5). In the early phase before interventions were implemented, R was greater
than 1 (indicating a growing outbreak) in all 25 countries, ranging from 1.5 to 5.4.
This range corresponds to doubling times of 8.7 days to 1.8 days. In the late phase
after interventions were implemented, R.s decreased in 24 out of 25 locations, the
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Figure 5. Interventions reduced Ref in 24 of the 25 countries or states/provinces investigated. Great-
est reductions are observed in locations with longer durations of sustained Alert Level 3-4 interven-
tions. (a) Re estimates for the early phase of an outbreak before interventions were implemented
(red) and late phase after interventions were implemented (blue) (each Re estimate is obtained by
fitting to daily new case counts in a 10-day window and plotted on the last day of the 10-day
window). Threshold for outbreak Re = 1 indicated by black dashed line. Note, countries (or states/
provinces) experienced their first confirmed case of COVID-19 infection on different dates; units on
horizontal axes are number of days since the 100th case of confirmed infection in an outbreak (by
which time an outbreak is typically established and driven mainly by community transmission). (b)
Reduction in R (difference between early-phase and late-phase Re estimates for each location)
against the length of time (days) spent under the restrictions, corresponding to Alert Level 1
(green diamonds), Level 2 (light blue triangles), Level 3 (dark blue squares) or Level 4 (purple
circles), that were in place in that location during the late phase.

exception being Singapore, where R declined over the first 30 days of the outbreak
before returning to values above 1 during a second outbreak. This was a result of the
virus spreading in a subgroup of the population with a substantially higher value of
Resf, in this case migrant workers. This factor is likely important in the dynamics of
COVID-19 spread in other countries, including New Zealand, and this illustrates one
of the limitations of homogeneous population models.

The effectiveness of interventions varied considerably between countries, with esti-
mates for R after interventions ranging from 0.3-2.1. Strong interventions (comparable
to Alert Levels 3-4) reduced R.; below the threshold for outbreak (R < 1) in 16
locations. At the time of analysis, these countries had spent varying durations under
restrictions and, in some locations, these may not have had sufficient time to achieve
their full potential effect. For instance, the delays between an individual being infected
with the virus to the onset of symptoms, and to being confirmed by testing, mean the
full extent of the reduction in R.g after interventions will not be observable in case
data until around 2 weeks after interventions are begun. The largest reductions in Reg
were achieved in locations (e.g. New York State and Quebec) that had sustained Alert
Level 3-4 restrictions for periods of more than 25 days.

Our results are in general agreement to other studies on R, for COVID-19 (e.g. Ali-
mohamadi et al. 2020; Cowling et al. 2020; Flaxman et al. 2020; Price et al. 2020). We
obtained similar late-phase R.f estimates but higher early-phase estimates than a
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global study by Abbott et al. (2020), which used an approach based on Thompson et al.
(2019). Our estimates of R from the exponential growth rate are based on an assumed
generation time distribution, which has mean 5.05 days. Other groups have estimated
longer mean generation times (Flaxman et al. 2020; Li et al. 2020). This would result
in our method returning higher estimates for R in the early phase and potentially
lower estimates for R in the late phase.

Estimating the effective reproduction number for New Zealand

The method we used to estimate R from international data is not suitable in the very
early stages of an outbreak, when daily numbers of new cases are low and exponential
growth is not fully established (i.e. growth in case numbers is initially erratic). In
addition, the method cannot distinguish between domestically transmitted cases and
imported cases, which accounted for a significant proportion of all cases in New Zeal-
and’s first outbreak. Applying the method to both domestic and imported cases would
yield artificially inflated estimates for Ry because the model assumes that all new
cases on a given day arose by transmission from existing active cases. Other methods
that do account for imported cases have been developed, but these also rely on sufficiently
high case numbers (Thompson et al. 2019).

For these reasons, we did not apply these approaches to New Zealand case data.
Instead, we fitted the stochastic model described above to the number of reported new
daily cases and found the value of the relative transmission rate C(t), and hence the
reproduction number R, at different Alert Levels that produced the best match. We
did this by simulating the model for a range of values of the relative transmission
rates C(¢): (i) for the period prior to Alert Level 4 (26 February to 25 March 2020);
and (ii) for the period spent in Alert Level 4 (26 March to 27 April 2020). We compared
the simulated number of reported cases per day to actual reported cases per day and cal-
culated the best-fit values of C(¢) by minimising the mean-square error of square root-
transformed data, over a time window from 10 March to 27 April and averaged over
1000 identically initialised realisations of the stochastic model. Bootstrap confidence
intervals (95%) were obtained by re-estimating C(¢) as described above (and correspond-
ing Refr) for each of 10,000 simulations from the best-fit model. Using this approach, we
estimated Re = 1.8 [1.44, 1.94] prior to moving to Alert Level 4 and
Reff = 0.35 [0.28, 0.44] during Alert Level 4. These estimates provided a good match
between model simulations and data (Figure 6). These results were relatively insensitive
to changes in other model parameters.

Our results suggest that New Zealand’s Alert Level 4 was highly effective at reducing
Refr below one, meaning that new infections would continue to decline as long as the
Alert Level remained in place. The Alert Level 4 estimate R = 0.35 is comparable to
the smallest reproduction numbers we estimated for other countries where comparable
interventions were particularly effective (Figure 5). For example, lockdowns in six Aus-
tralian states successfully reduced R to approximately 0.3-0.5 (Price et al. 2020). Other
countries (e.g. UK, USA, Sweden) remained at Res ~ 1 for prolonged periods (Binny
et al. 2020a), meaning that new infections remained steady or declined only slowly.
Our estimate for the reproduction number before Alert Level 4, Re = 1.8, is relatively
low compared to those reported globally. This could be due, in part, to measures put
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Figure 6. Simulated (red curves) and actual (black points) numbers of new daily reported cases in New
Zealand, along with simulated number of new daily infections (blue curves). Note that the move to
Alert Level 4 leads to an immediate drop in the number of simulated new infections, but there is a
lag before the number of reported cases begins to decrease. Light curves show individual realisations
of the stochastic model; bold curves show the average of all realisations. Effective reproduction
number Rer = 1.8 at Alert Level 2, Rer = 0.95 at Level 3, and Rer = 0.35 at Level 4.

in place in early- to mid-March, for example the cancellation of mass gatherings, employ-
ees being encouraged to work from home, self-isolation of international arrivals, and
tracing and testing of close contacts of cases associated with international travel.

The estimated 81% reduction in R as a result of the lockdown is in good agreement
with other studies, which employed a range of modelling approaches to assess effects of
physical distancing on Ref. For example, Jarvis et al. (2020) reported a 74% reduction in
Reff (from a mean of 2.6-0.62), as a result of physical distancing during lockdown in the
UK. Their approach used survey data to compare age-specific population contact rates
before and during lockdown. Another study by Flaxman et al. (2020) fitted a hierarchical
Bayesian model to data from 11 European countries and estimated an 81% reduction in
Refr due to lockdowns. A third study used a Bayesian SEIR-type model to infer a 78%
reduction in contacts in British Columbia due to the introduction of physical distancing
measures (Anderson et al. 2020).

Probability of elimination

Various definitions of elimination of an infectious disease have been suggested (e.g.
Dowdle 1998; Heymann 2006; Wilson, Parry, et al. 2020). A reasonable definition is
that there are no active cases that could contribute to future community transmission
(i.e. excluding cases that are no longer infectious or are in strictly managed isolation,
for example border quarantine facilities). In a global context, this is actually ‘local’ elim-
ination because COVID-19 transmission is still occurring in many other countries. This
is impossible to guarantee empirically, because there is always a risk of active cases that
are asymptomatic or otherwise undetected. However, it is straightforward to test in a
model and stochastic models are ideally suited to this purpose. The probability of ulti-
mate extinction of a branching process can be inferred directly from the distribution
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of the number of secondary cases when the latter is fixed and does not change over time
(e.g. Lloyd-Smith et al. 2005). However, we wanted to investigate scenarios where popu-
lation-wide control measures change the relative transmission rates over time, and in
which estimates of the probability of elimination could be updated using real-time obser-
vations. We therefore took a simulation-based approach as follows.

We estimated the probability that COVID-19 would eventually be eliminated in New
Zealand, conditional on observing a specified number of consecutive days with no new
reported cases (Binny et al. 2020b). Such estimates are important to inform decisions on
timings for the easing of restrictions. We simulated the branching process model up to 31
July 2020, using estimated values for Rg of 0.35 at Alert Level 4 (26 March to 27 April
2020), 0.95 at Alert Level 3 (28 April to 13 May 2020), and 1.78 at Alert Level 2 (14 May
2020 onwards). We ran 1000 realisations of the model and defined elimination as having
no remaining cases within 30 days of infection at the end of the simulation (i.e. no new
infections after 1 July). Results are not highly sensitive to the choice of end date which
was chosen for convenience. To obtain the probability of elimination conditional on
having n consecutive days with no new reported cases, we restricted the sample to realis-
ations with n consecutive days with no new reported cases and calculated the proportion
of these realisations that resulted in elimination. We used a longer delay from isolation to
reporting (mean 6 days) and, under an optimistic scenario with high detection and
reporting of clinical cases (75%), we found that reaching 95% probability of elimination

Assuming no new reported cases
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Figure 7. Probability of eventual elimination as a function of the observed number of consecutive
days with no new reported domestic cases. This is defined as the proportion of model realisations
with n consecutive days with no new reported cases that result in elimination. Optimistic scenario
with high detection and reporting of clinical cases (75%) and moderate effectiveness of Alert Level
2 (Reff = 1.8) and Level 3 (Rer = 0.95). Pessimistic scenario with low detection and reporting of clini-
cal cases (20%) and low effectiveness of Alert Level 2 (Ref = 2.3) and Level 3 (Rer = 2.2). Alert Level 4
Reft = 0.35.
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required 10 consecutive days with no reported cases (Figure 7). For a pessimistic scenario
with low detection of clinical cases (20%) and lower effectiveness of Alert Levels 2 and 3
(Refr of 2.3 and 2.2 respectively), 95% probability of elimination required 22 days with no
reported cases (Figure 7). These results are similar to those of Wilson, Parry, et al. (2020)
who used a different model.

The last reported case of COVID-19 in New Zealand in the first outbreak was 22 May.
This means that New Zealand reached a 95% probability of elimination on 1 June 2020
under the optimistic scenario, or 13 June 2020 under the pessimistic scenario. The relax-
ation to Alert Level 1 occurred on 9 June 2020.

Estimated inequities by ethnicity and healthcare access

Previous pandemics have shown that Maori and Pacific people are at greater risk of nega-
tive outcomes. During the 1918 influenza pandemic, Maori experienced death rates seven
times higher than New Zealand European/Pakeha (Pool 1973; Summers et al. 2018). In
the HIN1 influenza pandemic in 2009, Maori were infected at twice the rate of Pakeha,
and with increased severity (Wilson et al. 2012). International literature suggests that
COVID-19 follows similar patterns. Black, Asian and Minority Ethnic (BAME) groups
in the United Kingdom have experienced higher mortality rates, even after controlling
for comorbidities (Williamson et al. 2020). In the United States, Pacific populations
are experiencing greater rates of infection and hospitalisation (Jackson 2020).

In a New Zealand context, Te Tiriti o Waitangi requires the Crown to ensure that
Maori have equitable access to and outcomes from healthcare (Waitangi Tribunal
2019). However, as Talamaivao et al. (2020) have shown in their systematic review of
quantitative studies ‘experience of racial discrimination is an important determinant
of health in New Zealand, as it is internationally’.

Risk of outbreaks in disadvantaged communities

Several countries initially managed to control the spread of COVID-19 successfully, but
experienced major outbreaks when the virus reached disadvantaged groups, including
ethnic minorities. For example, Singapore appeared to have contained the spread of
COVID-19 until a rapidly growing outbreak was detected in migrant worker populations
in predominantly substandard housing. An antibody prevalence study in England found
infection rates were higher in BAME people, groups with high deprivation score, and for
those living in large households (Ward et al. 2020). Lack of access to primary care and
testing facilities, inequities and racism within the healthcare system, and crowded
living conditions are likely factors contributing to the rapid spread within disadvantaged
communities.

We developed a structured model of COVID-19 transmission to describe groups with
different levels of access to healthcare and testing facilities (James, Plank, Binny, et al.
2020). We modelled a reduction in transmission corresponding to Alert Levels 3 and
4, but assumed that transmission rates dropped less in the group with low access to
healthcare. This reflects factors such as substandard housing, financial stress, lack of
paid sick leave, insecure and high-contact employment, and inability to work from
home. For example, Pacific people in Auckland experience a high level of segregation
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by ethnicity (Manley et al. 2015; Salesa 2017), higher rates of overcrowding (Schluter et al.
2007) and higher rates of unmet healthcare needs (Ryan et al. 2019). These factors mean
that there is a higher risk of a major outbreak in this group. The modelling results showed
that if contact rates between groups with different levels of access to healthcare are rela-
tively low, the outbreak could grow very large before detection (James, Plank, Binny, et al.
2020). This implies that these inequities in access to healthcare and structural factors
affecting ability to undertake physical distancing need to be urgently addressed
(McLeod et al. 2020).

Relative fatality rates by ethnicity

Early in the pandemic, we sought to quantify the potential risk of fatality from COVID-
19 infection faced by Maori and Pacific people in New Zealand (Steyn, Binny, Hannah,
et al. 2020). We used international data on COVID-19 infection fatality rates by age
(Verity et al. 2020) alongside life expectancy statistics (StatsNZ 2020) to estimate age-
specific infection fatality rates for each ethnicity. This reflects the significantly increased
infection fatality rates experienced by older populations. We rescaled these age-struc-
tured fatality rates to reflect differing levels of unmet healthcare need and the prevalence
of various comorbidities, weighted by their prevalence in each age-ethnicity group.

We estimated that the risk of fatality for Maori is around 50% greater than the risk for
the New Zealand European and other group. Sensitivity analysis shows this may be as
high as 300% greater if the impact of greater unmet healthcare needs and lower life
expectancy have a larger effect than is reflected in officially recorded data. These
findings are consistent with evidence from other countries. A large study in the
United Kingdom (Williamson et al. 2020) found that Black people, even after controlling
for age, comorbidities, healthcare and deprivation, were 48% more likely to die from
COVID-19 infection.

These results only consider the risk of fatality following infection. As described above,
other factors may increase the rate of spread in disadvantaged communities, where Maori
and Pacific people are typically overrepresented. These communities therefore face elev-
ated levels of risk on two fronts: higher risk of infection and higher risk of clinically
severe outcomes and fatality following infection. Appropriately engaging with affected
communities to understand and respond to the inequities in transmission and clinical
outcomes of COVID-19 is critical for any government strategy or plan to be successful.

Policy-modelling interface

In New Zealand, there were relatively few modelling tools available early in the outbreak
to support government decision-making. The University of Otago’s School of Public
Health made use of a deterministic compartment model, developed with collaborators
in Germany (Wilson, Telfar Barnard, et al. 2020) to investigate long-term control strat-
egies. The Ministry of Health commissioned modelling from this group to support the
Cabinet decisions that led the country into Alert Level 4 in late March 2020. However,
this type of deterministic model is not well suited to supporting the types of decisions
the government faced in April and May 2020, as case numbers came under control and
the country progressed towards elimination. In mid-March, our team began work on
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the stochastic model described above, and from early April, this model was used exten-
sively to advise government, both on operational requirements and on policy settings.

On 27 March 2020, a ‘COVID-19 Modelling Workstream’ was established within the
National Crisis Management Centre (NCMC), with one of us (Shaun Hendy) reporting
directly to this workstream. It was subsequently agreed to divide the workstream into two
parts. The first would focus on operational advice, supported by a team at Orion Health-
care, including forecasting potential case numbers and patient loads on hospitals and
intensive care units. The second would investigate possible scenarios that might result
from future policy decisions.

The operational workstream produced daily reports, distributed to the NCMC, the
Department of Prime Minister and Cabinet (DPMC), the Ministry of Health, and District
Health Board (DHB) planners based on model simulations run using the latest case
numbers, clinical data, and parameter estimates. These operational reports had to
make assumptions concerning future policy settings (e.g. the dates on which lockdowns
might be eased), known as ‘working scenarios’ that were developed in discussions with
NCMC and Ministry of Health. The New Zealand Treasury also implemented a
version of the model to use in its forecasting of healthcare demand.

The policy workstream provided advice on policy settings through a process we
called the ‘scenario sandpit’. As decision points approached or particular issues
arose, policy-makers would request simulations to explore the outcome of their
decisions. For instance, in the lead up to the 20 April 2020 Cabinet decision on the
date for exiting Alert Level 4, DPMC requested simulations of ‘optimistic’ and ‘pessi-
mistic” scenarios for exits on 23, 27 April, and 7 May. The 23 April and 7 May scen-
arios were both explicitly included in the 20 April Cabinet Paper (DPMC 2020a). In
the end, Cabinet split the difference by deciding to set the exit date as 27 April.
The three scenarios provided to DPMC were developed via an iterative process that
involved intense engagement and feedback between the modelling team, departmental
science advisors, and policy analysts. Similar scenarios were also included in the 11
May and 8 June Cabinet Papers (DPMC 2020b; DPMC 2020c) reviewing Alert
Levels 3 and 2 respectively.

The branching process model that formed the basis of policy advice was subject to
several rounds of rapid peer review. During April and May, the model was updated
weekly after review by several panels and advisory groups. Te Pinaha Matatini estab-
lished a technical peer review panel, chaired by Dr Matthew Parry, and also made use
of reviews by the Ministry of Health’s Epidemiology Technical Advisory Group,
chaired by Associate Professor Patricia Priest. This provided a degree of quality assurance
(although not to the standard that would normally be expect from blind peer review), as
well as important feedback and guidance on further model developments. Once reviewed
and revised, descriptions of the models were released as working papers via Te Punaha
Matatini’s website. Considerable efforts were also made to communicate results publicly
via mainstream media and social media. Several data visualisations were produced in
partnership with the New Zealand Herald and an interactive version of the model
with a graphical user interface was made available to the public in late April
(‘COVID-19 Take Control Simulator’). This layer of quality assurance and transparency
allowed for informed public debate and enabled policy-makers to make decisions based
on independent, publicly available science.
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Discussion

Mathematical modelling has played a key role in informing New Zealand’s response to
the COVID-19 pandemic. This included the decision to ‘go hard, go early’ and issue
stay-at-home orders from 25 March 2020, as well as the timing of relaxation of alert
levels (DPMC 2020a, 2020b, 2020c). Public communication of the science behind the
response, in the mainstream media, social media and via interactive web apps, helped
build public understanding and trust in government decision-making.

In this paper, we have focused on the first COVID-19 outbreak in New Zealand
between February and May 2020. Mathematical modelling has continued to play a role
in preparedness and decision-making subsequently. This includes modelling the effec-
tiveness of manual and digital contact tracing systems (Plank et al. 2020; James, Plank,
Hendy, et al. 2020), and the risks from international arrivals and government-
managed quarantine facilities (Steyn, Binny, Hendy et al. 2020). The models were also
used to provide advice about the likely number of infected cases and the probability of
regional spread at the time of detection of the second outbreak on 11 August 2020.

The capacity of modelling tools and the data pipelines on which they rely has been
built up over a very short space of time. Ongoing investment in mathematical modelling
expertise and the structures, systems, and relationships needed to provide model-based
policy and operational advice will help increase New Zealand’s capacity to manage to
infectious diseases and increase preparedness for future pandemics.
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Appendix: mathematical model specification

This Appendix contains a mathematical specification of the stochastic continuous-time branching
process used to model the spread of COVID-19. Model parameters and distributions are given in
Table Al.

Branching process model

Infected individuals are grouped into two categories: (i) those who show clinical symptoms at
some point during their infection; and (ii) those who are subclinical throughout their infection.
Each new infection is randomly assigned as subclinical with probability pgy, = 0.33 and clinical

Table A1. Model parameters and distributions. Weibull and gamma distribution parameters are
specified as (scale,shape).

Parameter Value

Generation time distribution (days) Te~ Weibull(5.67, 2.83)
Incubation period distribution (days) T; ~ Gamma(0.95, 5.8)
Symptom onset to isolation distribution (days) T, ~ Exp(2.18)
Isolation to reporting distribution (days) Trep ~ Exp(3.48)

Mean reproduction number of clinical cases Ran =3

Mean reproduction number of subclinical infections Rsub = 0.5Rin
Superspreading dispersion parameter k=05

Proportion of subclinical infections Psup = 0.33

Clinical case detection Pdet = 0.75

Relative transmission rate after isolation Ciso = 0.65

Population size Npop = 5 x 10°
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with probability 1 — psub, independent of who infected them. Once assigned as clinical or subcli-
nical, individuals remain in this category for the duration of their infectious period.

The average reproduction number Ry, of subclinical individuals was assumed to be 50% of the
average reproduction number R, of clinical individuals. This reflects lower infectiousness of sub-
clinical cases (Davies et al. 2020). Individual heterogeneity in transmission rates was included by
setting the individual reproduction number R; for individual i to be R; = Ry, Y; for clinical cases
and R; = Ry, Y; for subclinical infections, where Y; is a gamma distribution with mean 1 and var-
iance 1/k. In the absence of case isolation measures (see below), each infected individual i causes a
randomly generated number N; ~ Poisson(R;) of new infections. This is equivalent to the super-
spreading model of Lloyd-Smith et al. (2005) with dispersion parameter k.

The time between an individual becoming infected and infecting another individual, the gen-
eration time T, follows a Weibull distribution with mean 5.0 days and standard deviation 1.9 days
(Ferretti et al. 2020). The infection times of all N; secondary infections from individual i are inde-
pendent, identically distributed random variables from this distribution. The model does not
explicitly include a latent period or pre-symptomatic infectious period. However, the shape of
the Weibull generation time distribution captures these phases, giving a low probability of a
short generation time between infections and with 90% of transmission occurring between 2.0
and 8.4 days after infection.

Individuals who have recovered from the virus are assumed to have immunity for the duration
of the period simulated and cannot be re-infected. This means that the proportion of the popu-
lation that is susceptible at time ¢ is 1 — N(t)/Npop, where N(t) is the cumulative number of infec-
tions at time ¢ and Ny, is the total population size.

Clinical cases have a probability pge of being tested and isolated. The time Tj,, between infec-
tion and isolation is modelled as the sum of two independent random variables T} and T5. T rep-
resents the incubation period (time from infection to onset of symptoms) and has a gamma
distribution with mean 5.5 days and standard deviation 2.3 days (Lauer et al. 2020). T, represents
the time from symptom onset to isolation and is modelled as an exponential distribution with
mean 2.2 days, based on New Zealand case data. Following isolation, transmission is reduced to
a proportion ¢, < 1 (Davies et al. 2020) of the value it would be without isolation. There is a
further delay from isolation until a positive test result is returned, which is assumed to be expo-
nentially distributed with mean 3.48 days. We assume that infected individuals always return a
positive result when tested (i.e. we do not model false negatives). Subclinical infections do not
get tested or isolated and are not reported as confirmed cases (i.e. they remain undetected).
This models a symptom-based testing regime where asymptomatic individuals are not routinely
tested, which was largely the case in New Zealand’s March-May outbreak.

For computational convenience, the continuous-time model defined above is simulated using a
time step of 6t = 1 day. At each time step, infectious individual i produces a Poisson distributed
number of secondary infections with mean

t+8t
() = c<t><1 _N (t))RiF(t Ty = Tao) j W(r =Ty )dr, (A1)
Npop

t

where Tj; is time individual i became infected, Tj,; is the time between infection and isolation of
individual i, C(t) is the relative population-wide transmission rate at time ¢ (with higher Alert
Levels corresponding to smaller values of C(t)), and F(¢) is a function describing the reduction
in transmission due to isolation defined by:

(A2)

_} Ciso» s>0 and Di =1,
F(s) = { 1, otherwise,

where D; ~ Bernoulli( pge) for clinical cases and D; = 0 for subclinical cases is a random indicator vari-
able that equals 1 if case i is tested. All individuals are assumed to be no longer infectious 30 days after
being infected. This is an upper limit for computational convenience; in practice, individuals have very
low infectiousness after about 12 days because of the shape of the generation time distribution.
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Seed cases

The model was initialised with seed cases representing arrival of infected individuals from over-
seas. The number and timing of these seed cases was chosen to replicate actual imported cases.
Data was obtained from the Ministry of Health in real time on confirmed and probable cases of
COVID-19 in New Zealand. For each case, the dataset contained the following fields: whether
there was a known recent international travel history and if so date of arrival to New Zealand;
date of symptom onset (from patient recall, where available); date of isolation; date of reporting.

Model simulations were seeded with the Nj,q cases with a known recent history of international
travel. For these cases, the infection date was estimated backwards from the date of symptom onset
(using the incubation period distribution shown in Table A1). For cases without an onset date, the
infection date was instead backdated from the arrival date. Cases without an isolation date were
assumed to remain unisolated (i.e. F(s) = 1) for the whole infectious period. Secondary infections
that occurred before arrival in New Zealand were ignored. Cases that were recorded as having a
recent international travel history but missing an arrival date were assumed to have arrived at
the same time as infection, i.e. they spent their entire infectious period in New Zealand. To
allow for the fact that the case data only includes clinical cases, an additional number
Nintsub ~ Poisson(Nipgpsub/(1 — psub)) of subclinical seed cases were added. The infection dates
and arrival dates for these subclinical seed cases were approximated by randomly sampling with
replacement from the clinical seed cases.

For each simulation, the model outputs the number of newly infected cases each day and the
number of cases reported each day. These outputs were averaged over M independently initialised
realisations of the model.

Effective reproduction number

In the absence of any case-targeted or population-wide control measures (i.e. with ¢, = 1 and
C(t) = 1), the implied basic reproduction number of the model is

RO == (1 - Psub)Rclin +psubRsub~ (A3)

For the values of psyp, Reiin and Rgyp, shown in Table Al, this gives a basic reproduction number
of R() = 2.5.

Population-wide control measures at time ¢ reduces transmissions by a factor of C(t). Case iso-
lation reduces transmission by a factor of ¢, from a proportion pge of clinical cases after their
isolation time. Together, these measures give an effective reproduction number R in a fully sus-
ceptible population of

Reff = C(t)[(l - Psub)(pdet(q + Ciso(l - q)) +1 _Pdet)Rclin +psubRsub]> (A4)

where q = Pr(Tg < T) + T3) is the proportion of transmission that occurs prior to isolation.
Table A2 shows the values of C(t) used to model New Zealand’s four COVID-19 Alert Levels
during the March - May 2020 outbreak and the corresponding values of Ress calculated using
Equation (A4).

Table A2. Relative transmission rate C(t) and corresponding effective reproduction number R used
to model New Zealand’s COVID-19 Alert Levels 1-4 during the March — May 2020 outbreak. Ref is
calculated according to Equation (A4).

Alert level C(t) Rest
1 1.00 2.37
2 0.75 1.78
3 0.40 0.95
4 0.15 0.35
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