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1.  Full Model Specifications 
 

Deterministic SEIR Implementation 
 

Transmission Model 
 

The SEIR model consists of five non-vaccinated compartments for each age group 𝑖: 

susceptible (𝑆!), exposed (𝐸!), clinical infectious (𝐼!), subclinical infectious (𝐴!), and recovered 

(𝑅!). The model also includes the same five compartments for vaccinated age groups, denoted 

with a superscript 𝑣. Finally, an additional compartment for vaccinated infection-immune 

individuals 𝐼𝑚𝑚! is included. (Figure S1, Equations S1 and S2). 

 

The model is initialised with a proportion, 𝑣!, of each age group vaccinated. Of these, 

(1 − 𝑒")𝑣! are assigned to the susceptible vaccinated compartment 𝑆!#, and the remaining 𝑒"𝑣! 

are assigned to the immune vaccinated compartment 𝐼𝑚𝑚!. That is, we are assuming the 

infection blocking aspect of the vaccine acts in an “all-or-nothing” fashion. This is elaborated 

on in the Sensitivity to Vaccine Infection Blocking Assumptions in Supplementary Information 

Section 2. 
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Figure S1. Structure diagram of the deterministic SEIR implementation. 𝑆! , 𝐸! , 𝐼! , 𝐴! , 𝑅! 

represent the number of susceptible, exposed, clinical infectious, subclinical infectious and 

recovered individuals respectively in age group 𝑖. Superscript 𝑣’s indicate vaccinated 

compartments and 𝐼𝑚𝑚! consists of individuals that are vaccinated and immune to infection. 

The model consists of 10 ordinary differential equations for each age group which are outlined 

in equations (S1). 

 

𝑑𝑆!
𝑑𝑡 = 	−𝜆!𝑆! 

𝑑𝐸!
𝑑𝑡 = 𝜆!𝑆! − 𝑡$%&𝐸! 

𝑑𝐼!
𝑑𝑡 = 𝑝!'(!)𝑡$%&𝐸! − 𝑡"%&𝐼! 

𝑑𝐴!
𝑑𝑡 = 51 − 𝑝!'(!)6𝑡$%&𝐸! − 𝑡"%&𝐴! 

𝑑𝑅!
𝑑𝑡 = 𝑡"%&(𝐼! + 𝐴!) 

𝑑𝑆!#

𝑑𝑡 = 	−𝜆!𝑆!# 

𝑑𝐸!#

𝑑𝑡 = 𝜆!𝑆!# − 𝑡$%&𝐸!# 

𝑑𝐼!#

𝑑𝑡 = 𝑝!'(!)𝑡$%&𝐸!# − 𝑡"%&𝐼!# 

𝑑𝐴!#

𝑑𝑡 = 51 − 𝑝!'(!)6𝑡$%&𝐸!# − 𝑡"%&𝐴!# 

𝑑𝑅!#

𝑑𝑡 = 𝑡"%&(𝐼!# + 𝐴!#) 
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Equations S1. Equations are identical for the vaccinated and non-vaccinated groups. The 

model is typically solved with initial conditions 𝑆! = 𝑁!(1 − 𝑣!), 𝑆!# = 𝑁!𝑣!(1 − 𝑒"), and 

𝐼𝑚𝑚! = 𝑁!𝑣!𝑒" (although 𝐼𝑚𝑚! is fixed so doesn’t feature in these equations). 

 

𝜆! = 𝑈
𝑢!
𝑁!
;5𝐼* + 𝜏𝐴* + (1 − 𝑒+)5𝐼*# + 𝜏𝐴*#6 + 𝑡"𝑚*6𝐶*,!
*

	 (𝑆2) 

 

In equations (S1), 𝑡$ and 𝑡" is the mean time spent in the exposed compartment (i.e. the latent 

period) and mean time spent in the infectious compartment respectively. The proportion of 

infections in age group 𝑖 that are clinical is given by 𝑝!'(!), and 𝜆! is the infection force acting 

on age group 𝑖, defined in equation (S2).  

 

In equation (S2), 𝑁! is the total number of individuals in age group 𝑖, 𝑢! is the relative 

susceptibility to infection of age group 𝑖, and 𝑈 is a constant chosen so the model is run with 

the desired value of 𝑅-. Together 𝑈𝑢! can be thought of as the probability of an individuals in 

age group 𝑖 becoming infected given contact with an “average” infectious individual.  The 

number of imported cases per day in age group 𝑗 is given by 𝑚* – these are assumed to be 

clinical, not vaccinated, and spend their entire infectious period in the country. 𝜏 is the relative 

infectiousness of subclinical individuals. These cases are not assigned to a compartment so are 

not counted towards total cases, hospitalisations, and fatalities. 

 

The average infectious period, 𝑡", is assumed to be 5 days [1]. While the cited paper uses a 

latent period of 3 days, we use 𝑡$ = 2.55 days for consistency with the branching process 

implementation. This ensures the mean of the implied generation time distribution matches that 

used in the branching process. Sensitivity analysis performed on 𝑡$ shows it only affects the 

timing of epidemic peaks, rather than the final size or health outcomes. 

 

Hospitalisation and Fatality Subroutine 

 

The number of hospitalisations and fatalities are also tracked through a hospitalisation 

subroutine. This consists of an additional three compartments: 𝐻!, 𝐹!, and 𝐷𝑖𝑠𝑐ℎ!. These 

represent individuals in hospital, fatalities, and those discharged from hospital. The cumulative 
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number of hospitalisations is given by the sum in 𝐹! and 𝐷𝑖𝑠𝑐ℎ!. The same three compartments 

are repeated for vaccinated individuals. (Figure S2, Equations S3). 

 

 

 
Figure S2. Structure diagram of the hospitalisation and fatality subroutine. 𝐸!, 𝐻! , 𝐷𝑖𝑠𝑐ℎ! ,	and 

𝐹! represent the number of exposed individuals (from the primary transmission model), number 

of current hospitalisations, number of discharged, and number of fatalities respectively. 

 

 

𝑑𝐻!
𝑑𝑡 = 𝑝!

./01𝑡$%&𝐸! − 𝑡2%&𝐻! 

𝑑𝐹!
𝑑𝑡 =

𝑝!3456.

𝑝!
./01 𝑡2

%&𝐻! 

𝑑𝐷𝑖𝑠𝑐ℎ!
𝑑𝑡 = H1 −

𝑝!3456.

𝑝!
./01 I 𝑡2

%&𝐻! 

𝑑𝐻!#

𝑑𝑡 = (1 − 𝑒7)𝑝!
./01𝑡$%&𝐸!# − 𝑡2%&𝐻!# 

𝑑𝐹!#

𝑑𝑡 =
𝑝!3456.

𝑝!
./01 𝑡2

%&𝐻!# 

𝑑𝐷𝑖𝑠𝑐ℎ!#

𝑑𝑡 = H1 −
𝑝!3456.

𝑝!
./01 I 𝑡2

%&𝐻!# 

Equations S3.  

 

In these equations, 𝑝!
./01 and 𝑝!3456. are the probability of being hospitalised and dying 

conditional on being infected. 𝑡2 is the mean time spent in hospital. For simplicity, we assume 

that exposed individuals are hospitalised with the same average delay as they become 

infectious, and that hospitalised individuals die with the same average delay as they are 

discharged. This only has a minor effect on the timing of the peak hospital occupancy estimates. 
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Stochastic Branching Process Implementation 
 

Evidence suggests overdispersion in the distribution of the number of secondary cases in 

SARS-CoV-2 transmission: a few individuals typically account for a large amount of 

transmission (“superspreading”) [2]. One estimate suggests a negative binomial distribution 

with 𝑟 = 	𝑘 = 0.5 is an appropriate model for the distribution of the number of secondary cases 

[3]. To include this in the branching process, each clinical infected individual 𝑙 is assigned a 

reproduction number 𝑅('(!) given by: 

𝑅('(!) = 𝑈𝑡"𝑌((1 − 𝑉(𝑒+);𝑢*𝐶5!,*
*

 

where 𝑌( is drawn independently from a gamma distribution with shape 𝑘 and scale 1/𝑘, 𝑎( is 

the age group of individual 𝑙, and 𝑉( is an indicator variable that equals 1 when individual 𝑙 is 

vaccinated and 0 otherwise. If the individual is subclinical then 𝑅(089 = 𝜏𝑅('(!).  

 

The number of secondary cases that would be generated by individual 𝑙 at timestep 𝑡 in a non-

vaccinated population is then given by: 

𝑆(6~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 H𝐹'6:((𝑡)𝐹(!0/((𝑡)𝑅( V 𝑤5𝜏 − 𝑡!);,(6
6<=6

6
𝑑𝜏I	  

Assuming 𝐹'6:((6) = 𝐹(
!0/((6) = 1, the distribution of ∑ 𝑆(66  is negative binomial with mean 𝑅( 

and overdispersion 𝑘 = 0.5. 𝐹('6:((𝑡) represents the reduction in transmission as a result of any 

population-level control measures and is equal to 1 if there are no control measures in place at 

time 𝑡. 𝐹(!0/((𝑡) represents the reduction in transmission as a result of case isolation and contact 

tracing and is equal to 1 before individual 𝑙 has been isolated, and equal to 0 after. 𝑡!);,( is the 

time that individual 𝑙 was infected, and 𝑤(𝑡) is the probability density function for the 

generation time distribution, which is assumed to be a Weibull distribution with mean 5 days 

and standard deviation 1.9 days [4].  

 

Each would-be secondary infection is randomly assigned an age group, with probability of 

being assigned to age group 𝑗 of 
8"@#!,"
∑ 8"@#!,""

, and is then assigned to the vaccinated class with 

probability 𝑣* and to the clinical class with probability 𝑝*'(!). Would-be secondary infections in 

the vaccinated class have probability 𝑒" of being prevented (i.e. not infected). Clinical 
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individuals have onset dates drawn from a gamma distribution with mean 5.51 days and 

standard deviation 2.29 days [4]. Clinical non-vaccinated individuals are assigned to the 

hospitalised class with probability 
1"
%&'(

1"
)!*+ , and similarly clinical vaccinated individuals are 

assigned to the hospitalised class with probability (1 − 𝑒7)
1"
%&'(

1"
)!*+ . Finally, hospitalised 

individuals are assigned to the fatality class with probability 
1"
,*-,

1"
%&'(. 

 

The branching process is simulated in time steps of Δ𝑡 = 1	𝑑𝑎𝑦.  

 

Case Detection, Isolation and Controls 
 

A simple case detection and contact tracing model is also implemented. Before an outbreak is 

detected, symptomatic individuals are assumed to have a probability 𝑝3464'6
1:4  of getting a test 

and being detected and subsequently isolated. The time from symptom onset to detection is 

drawn from an exponential distribution with mean 𝑡3464'6 and we assume individuals are 

immediately isolated on detection. We assume there is no testing of asymptomatic individuals 

in the period before an outbreak is detected. 

 

Once an outbreak is detected, contact tracing begins and all existing and future infections are 

assumed to be detected by contract tracing with probability 𝑝6:5'4. For simplicity, we assume 

this probability is the same for symptomatic and asymptomatic individuals and independent of 

other cases. Traced individuals are isolated with an exponentially distributed delay with mean 

𝑡6:5'4 from the time of infection (or from the time the outbreak was first detected if this was 

later than the time of infection). Non-traced clinical cases are also detected with probability 

𝑝3464'6
1/06  and isolated with mean delay of 𝑡3464'6 days from symptom onset. This models 

symptom-triggered testing for individuals that are missed by contact tracing. Typically we 

assume 𝑝3464'6
1/06 > 𝑝3464'6

1:4  to model greater symptom awareness and higher testing rates once 

an outbreak is detected. There is no testing of untraced asymptomatic individuals. 
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The effect of case isolation and contact tracing on 𝑅 after outbreak detection in the model can 

be calculated analytically. Individuals that are contact traced (with probability 𝑝6:5'4) spend 

an average of 𝑃(𝑇B < 𝑇6:5'4) of their infectious period in the community prior to isolation, 

where 𝑇B  is a random variable representing the generation time. The probability that a randomly 

chosen individual in age group 𝑗 is not traced but is detected through symptom-triggered testing 

is (1 − 𝑝6:5'4)𝑝3464'6
1/06 𝑝*'(!) and they spend an average of 𝑃(𝑇B < 𝑇/)046 + 𝑇3464'6) of their 

infectious period in the community. As the branching process is simulated in time steps of 1 

day, the random variable representing the generation time 𝑇B  is the ceiling of the Weibull 

random variable described in Table 3. 

 

This implies the elements of the post-detection next generation matrix are: 

𝑁𝐺𝑀!,*
6:5'4 = 𝛼*𝑁𝐺𝑀!.* 	 (𝑆4) 

where: 

𝛼* = 1 − 𝑝6:5'451 − 𝑝3464'6
1/06 𝑝*'(!)6𝑃(𝑇B > 𝑇6:5'4)

− (1 − 𝑝6:5'4)𝑝3464'6
1/06 𝑃(𝑇B > 𝑇/)0 + 𝑇3464'6)

− 𝑝6:5'4𝑝3464'6
1/06 𝑝*'(!)𝑃(𝑇B > min(𝑇6:5'4 , 𝑇/)0 + 𝑇3464'6)) 

and the implied reduction in 𝑅 from case isolation and contact tracing is: 

1 −
𝜌(𝑁𝐺𝑀6:5'4)
𝜌(𝑁𝐺𝑀)  

 

Baseline parameter values for testing and tracing are 𝑝6:5'4 = 0.7, 𝑡6:5'4 = 6	𝑑𝑎𝑦𝑠, 𝑝3464'6
1/06 =

0.4, 𝑡3464'6 = 4	𝑑𝑎𝑦𝑠. The individual choices for the parameter values are less important than 

their combined effect on the reproduction number 𝑅. For these values, 𝑃(𝑇B > 𝑇6:5'4) =

0.583, 𝑃(𝑇B > 𝑇/)0 +	𝑇3464'6) = 0.206, and 𝑃(𝑇B > min(𝑇6:5'4 , 𝑇/)0 + 𝑇3464'6)) = 0.648, 

leading to a reduction in	𝑅 from contact tracing of 43.7% in a non-vaccinated population. 

 

Under current assumptions, aside from a very small effect due to age-structured clinical rates, 

the effectiveness of contact tracing and case isolation (measured by a percentage reduction in 

𝑅 without contact tracing) is largely invariant to vaccination levels. Future work will be 

required to consider how vaccination may change this. In such a case it may be useful to define 

different probabilities of detection and tracing for vaccinated and non-vaccinated individuals. 
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Contact Matrix 
 

In the absence of New Zealand specific contact data, we use a synthetic contact matrix 𝐶 by 

Prem, Cook [5] for both model implementations. This matrix is constructed from international 

POLYMOD data [6], fit to the New Zealand age, household, and work structures. The elements 

of this matrix 𝐶!,* give the average daily number of contacts that an individual in group 𝑖 has 

with individuals in group 𝑗. This implies that he total number of daily contacts that occur 

between an individual in group 𝑖 and an individual in group 𝑗 is 𝑁!𝐶!,* where 𝑁! is the size of 

group 𝑖. Therefore by symmetry, the contact matrix should satisfy the detailed balance 

condition 𝑁!𝐶!,* = 𝑁*𝐶*,! but it does not satisfy this condition, which has implications on its use 

in modelling. 

 

The contact matrices by Prem et al and POLYMOD [5, 6] have been used in various modelling 

studies. Some define the SEIR infection pressure on age group 𝑖 as 𝜆! ∝ ∑ 𝐶*,!* 𝐼* [6, 7], 

whereas others define the infection pressure as 𝜆! ∝ ∑
@*,"""
D"*   [5, 8, 9]. If the contact matrix does 

not satisfy the detailed balance condition, these give different results. 

 

It is not obvious which method is more correct, so we impose detailed balance by using the 

modified contact matrix defined by: 

𝐶E,Fk =
1
2
l𝐶!,* +

𝑁*
𝑁!
𝐶*,!m	  

This ensures both expressions of the infection pressure produce identical results and can be 

thought of as “averaging” over both methods. We test the implications of using each method 

in Supplementary Information section 2. 
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2. Sensitivity Analysis 
 

Sensitivity to Contact Structure Assumptions 
 

We begin by considering six next-generation-matrices: 

𝑁𝐺𝑀!,* ∝
1
2
H𝐶*,! +

𝑁!
𝑁*
𝐶!,*I𝑢![𝑝*'(!) + 𝜏(1 − 𝑝*'(!))] (1) 

𝑁𝐺𝑀!,* ∝ 𝐶*,! 	𝑢![𝑝*'(!) + 𝜏(1 − 𝑝*'(!))] (2) 

𝑁𝐺𝑀!,* ∝
𝑁!
𝑁*
𝐶!,*𝑢! 	[𝑝*'(!) + 𝜏(1 − 𝑝*'(!))] (3) 

𝑁𝐺𝑀!,* ∝
1
2
H𝐶*,! +

𝑁!
𝑁*
𝐶!,*I (4) 

𝑁𝐺𝑀!,* ∝ 𝑁! 	[𝑝*'(!) + 𝜏(1 − 𝑝*'(!))] (5) 

𝑁𝐺𝑀!,* ∝
1
2
H𝐶*,! +

𝑁!
𝑁*
𝐶!,*I p𝑝*'(!) + 𝜏51 − 𝑝*'(!)6q (6) 

The first four are based on the Prem, Cook [5] contact matrix 𝐶. Our implementation is given 

in (1), which can be thought of as an “average” of (2) and (3) that ensures the detailed balance 

condition holds. (2) uses the matrix in the same way as [6, 7] while (3) uses the matrix in the 

same way as [5, 9]. (4) assumes that clinical and subclinical individuals have the same 

infectiousness. (5) assumes proportional mixing, where individuals interact with other age 

groups proportional to their size. Finally, (6) reproduces our implementation of (1) without 

age-based susceptibility. 

 

The dominant eigenvectors of these next-generation-matrices give the pseudo-steady age 

distribution of infections assuming a fully susceptible population (Figure S3). They can be 

thought of as representing the expected age distribution of cases before any significant 

immunity has accumulated.  

 

Critically our implementation in (1) places slightly more weighting on older age groups than 

(2) and slightly less than (3). Thus, with respect to negative health outcomes, it is more 

pessimistic than (2) but more optimistic than (3). The similarity between (1) and (4) suggests 

the assumption that subclinical individuals are less infectious doesn’t significantly alter the 

transmission dynamics. 
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Proportional mixing (5) assumes significantly higher contact between older age groups and the 

rest of the population, hence health outcomes from models that use this are expected to be 

significantly worse. Finally, removing age-based susceptibility in (6) results in under-20-year-

olds, who typically have more contacts, contributing to a large amount of spread. 

 

 
Figure S3. Dominant eigenvector of the four next-generation-matrices defined in equations (1-

6) above. 

 

Effect of Different Contact Assumptions on the Vaccinated Reproduction Number 
 

Varying the relative importance of age groups on transmission has implications for the effect 

of vaccination on the reproduction number. We reproduce the results from Figure 2 under the 

same vaccine roll-out assumptions and baseline parameters for three of the contact matrices 

described above: (1) standard, (5) proportional mixing, and (6) no age based susceptibility 

(Figure S4). Since the relative importance of children in (6) is increased, in scenarios like this 

where older individuals are vaccinated first, more vaccinations are required to reach the 

population immunity threshold. 
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Figure S4. Vaccinated reproduction number under three different contact assumptions: the 

standard model, proportional mixing, and no age based susceptibility. Baseline vaccine 

effectiveness is assumed for all scenarios. 

 

Sensitivity analysis of results on Relaxation of Border Restrictions 
 

Assuming baseline vaccine effectiveness, we reproduce the results from Tables 5 and 6 in the 

main text under three contact assumptions: the standard model, proportional mixing, and no 

age based susceptibility (Tables S1 and S2).  
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𝑹𝟎 = 𝟑. 𝟎 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  0.98 0.84 1.58 

Infections 150,000 (44%) 60,000 (55%) 990,000 (31%) 

Hospitalisations  2,000 (35%) 1,400 (35%) 8,900  (35%) 

Fatalities 230 (35%) 240 (35%) 1,100 (35%) 

Peak in hospital N/A N/A 1000 (after 140 days) 

 𝑹𝟎 = 𝟒. 𝟓 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  1.47 1.26 2.38 

Infections 1,300,000 (43%) 1,200,000 (53%) 1,600,000 (36%) 

Hospitalisations  17,000 (35%) 25,000 (35%) 18,000 (35%) 

Fatalities 2,200 (35%) 4,400 (35%) 2,400 (35%) 

Peak in hospital 2,000 (after 140 days) 2,300 (after 160 days) 3,500 (after 80 days) 

 𝑹𝟎 = 𝟔. 𝟎 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  1.96 1.68 3.17 

Infections 1,800,000 (44%) 1,800,000 (50%) 1,900,000 (39%) 

Hospitalisations  25,000 (35%) 35,000 (35%) 24,000 (35%) 

Fatalities 3,400 (35%) 6,100 (35%) 3,300 (35%) 

Peak in hospital 4,700 (after 90 days) 6,000 (after 100 days) 5,900 (after 60 days) 

Table S1. Results from an unmitigated epidemic with 90% vaccine coverage of the over 15-

year-old age groups. Values in parenthesis give percentage of 

infections/hospitalisations/fatalities that occur in vaccinated individuals. 

 

𝑹𝟎 = 𝟑. 𝟎 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  0.61 0.61 0.61 

Infections 13,000 (73%) 16,000 (73%) 13,000 (73%) 

Hospitalisations  240 (35%) 420 (35%) 380 (35%) 

Fatalities 26 (35%) 75 (35%) 21 (35%) 

 𝑹𝟎 = 𝟒. 𝟓 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  0.92 0.92 0.92 
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Infections 210,000 (73%) 260,000 (73%) 190,000 (73%) 

Hospitalisations  3,800 (35%) 6,900 (35%) 2,800 (35%) 

Fatalities 410 (35%) 1,200 (35%) 310 (35%) 

 𝑹𝟎 = 𝟔. 𝟎 Standard Proportional Mixing No Age Based 

Susceptibility 

𝑅"  1.22 1.22 1.22 

Infections 770,000 (73%) 920,000 (73%) 760,000 (73%) 

Hospitalisations  14,000 (35%) 24,000 (35%) 12,000 (35%) 

Fatalities 1,700 (35%) 4,200 (35%) 1,400 (35%) 

Peak in hospital 1,300 (after 150 days) 2,200 (after 150 days) 1,100 (after 150 days) 

Table S2. Results from an unmitigated epidemic with 90% vaccine coverage of the total 

population. Values in parenthesis give percentage of infections/hospitalisations/fatalities that 

occur in vaccinated individuals. 

 

Sensitivity to Vaccine Roll-out Structure 
 

In the main paper we assume that the population is separated into three groups: 65+ year-olds, 

15-64-year-olds, and under-15-year-olds. In mid-June 2020 it was announced that the general 

roll-out would be further age-structured. We re-calculate the results presented in Figure 2 and 

Figures 4-6 under a more structured roll-out. 

 

We assume, as before, that over 65-year-olds receive the vaccine first. Once 90% of this group 

is vaccinated, we assume that each 5-year age band is vaccinated successively up to 90%, until 

the under-15-year-old group is reached. The effect of this on the reproduction number is 

presented in Figure S5. The effect of this on an unmitigated outbreak (see the Open Borders 

Scenario section in the main text) is presented in Figures S6-S8. 

 

The more structured roll-out implies a slower reduction in 𝑅 due to vaccination. This occurs as 

groups with higher contact are vaccinated later in the roll-out. However, the health implications 

of any widespread outbreak decrease faster under this assumption, as older individuals that are 

more at risk are vaccinated earlier in the roll-out.  
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Figure S5. Effective reproduction number 𝑅# after vaccination as a function of total vaccine 

courses administered, with a maximum of 90% coverage in any age group, for (a) 𝑅- = 3, (b) 

𝑅- = 4.5, and (c) 𝑅- = 6.0. Default vaccine effectiveness parameters are used (𝑒" = 70%, 

𝑒+ = 50%). Standard assumptions represent the roll-out outlined in Figure 2 of the main text, 

with the 15-64 year old age groups being targeted together. The more structured scenario 

assumes vaccination of  this group occurs in successive 5-year groups (see paragraph above). 
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Figure S6. Total infections (a), hospitalisations (b), fatalities (c), and peak hospital occupancy 

(d) at the two vaccine rollouts described in the caption of Figure S5 and 𝑅- = 3.0. Results are 

from a 2-year simulation, assuming there is no further vaccination after the outbreak begins. 

 

 
Figure S7. Total infections (a), hospitalisations (b), fatalities (c), and peak hospital occupancy 

(d) at the two vaccine rollouts described in the caption of Figure S5 and 𝑅- = 4.5. Results are 

from a 2-year simulation, assuming there is no further vaccination after the outbreak begins. 
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Figure S8. Total infections (a), hospitalisations (b), fatalities (c), and peak hospital occupancy 

(d) at the two vaccine rollouts described in the caption of Figure S5 and 𝑅- = 6.0. Results are 

from a 2-year simulation, assuming there is no further vaccination after the outbreak begins. 

 

Sensitivity to Vaccine Infection Blocking Assumptions 
 

There are two ways in which a vaccine that prevents a proportion 𝑒" of infections is typically 

modelled. The first, often described as an “all-or-nothing” vaccine, is where a proportion 𝑒" of 

vaccinated individuals are completely immune to any infection and a proportion 1 − 𝑒" are 

completely susceptible. The second, often described as a “leaky” vaccine, assumes all 

vaccinated individuals have some likelihood of being infected given exposure, but that 

likelihood is reduced by a factor of 𝑒" relative to non-vaccinated individuals. There is, at 

present, limited evidence as to which of these assumptions is more realistic and it is possible 

that reality lies somewhere between the two (i.e. individuals are distributed along a spectrum 

of vaccine effectiveness). The results in the main text assume an “all-or-nothing” vaccine. 

Here, we investigate model outputs under a leaky vaccine assumption. 

 

The choice of an all-or-nothing or a leaky vaccine assumption only affects how the 

accumulation of infection-acquired immunity changes the dynamics of an epidemic. The 

results on the effective reproduction number in the absence of any infection-acquired immunity 

(i.e. Figures 2-3 of the main text) are invariant to this assumption. The results from the 
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stochastic implementation are also invariant to this assumption as infection-acquired immunity 

is ignored in this model. Previous modelling work also suggests that the choice of 

implementation has little effect on optimal vaccine roll-out strategies [1].  

 

The choice of vaccine assumption only significantly affects the counterfactual scenarios where 

an epidemic wave occurs, ending due to the build-up of infection-acquired immunity in the 

population (e.g. Tables 5 and 6 and Figures 4, 5, and 6 in the main text). For comparison, we 

reproduce the results from Tables 5 and 6 “Open Borders Scenario”. Recall this scenario 

assumes five non-vaccinated imported cases per day. Vaccine effectiveness against infection 

and transmission are given in the table, with all scenarios assuming that 𝑒7 is set so the overall 

effectiveness against severe disease is 95%. 

 

 𝑹𝟎 = 𝟒. 𝟓 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  0.92 1.58 0.47 

Infections 320,000 2,500,000 8,700 

Hospitalisations  5,700 36,000 240 

Fatalities 610 4,500 26 

Table S3. Results from a 2-year unmitigated epidemic with a leaky vaccine and 90% coverage 

of the total population (as per Table 3). 

 

 𝑹𝟎 = 𝟒. 𝟓 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  1.47 1.86 1.35 

Infections 1,800,000 3,300,00 760,000 

Hospitalisations  24,000 43,000 9,700 

Fatalities 3,000 5,600 1,200 

Table S4. Results from a 2-year unmitigated epidemic with a leaky vaccine and 90% coverage 

of over 15-year-olds (as per Table 4). 

 

In scenarios where 𝑅# is high (e.g. low vaccine effectiveness, low vaccination coverage, or 

high 𝑅-), the leaky vaccine assumption leads to substantially higher numbers of infections, 

hospitalisations, and deaths than the all-or-nothing vaccine assumption does. When 𝑅# is low 

the results are very similar [10]. 

 



 

 19 

Approval for 12+ Year-Olds Only 
 

Some countries have approved the Pfizer-BioNTech vaccine for use in children 12 years old 

and above.  As an approximation, vaccinating 90% of 12-14-year-olds is similar to vaccinating 

54% of 10-14-year-olds (90% of three out of five of the ages). We reproduce Table 5 with these 

additional vaccines in Table S5. 

 

When 𝑅- = 3.0, these additional vaccinations have a particularly large effect in the baseline 

vaccine effectiveness scenario. When only 15+ year-olds are vaccinated, 𝑅# is estimated to be 

0.98, or fairly close to 1. The additional vaccines administered lower this to 0.82, significantly 

decreasing the number of infections from 150,000 to 34,000. 

 

When 𝑅- = 4.5, these additional vaccinations are still insufficient to reach the population 

immunity threshold, although in the higher effectiveness scenario 𝑅# = 1.03 is fairly close 

(compared to 𝑅# = 1.35 when only 15+ year-olds are vaccinated). Minor social distancing 

and/or testing and tracing measures would be sufficient to bring 𝑅 below 1 in this scenario. 

 

𝑹𝟎 = 𝟑. 𝟎  Baseline Lower Effectiveness Higher Effectiveness 

Vaccine Effectiveness 𝑒# = 70%, 𝑒$ = 50% 𝑒# = 50%, 𝑒$ = 40% 𝑒# = 90%, 𝑒$ = 50% 

𝑅"  0.82 1.16 0.69 

Infections 34,000 (53%) 880,000 (67%) 9,500 (26%) 

Hospitalisations  500 (35%) 12,000 (47%) 160 (15%) 

Fatalities 56 (35%) 1,400 (47%) 18 (15%) 

Peak in hospital N/A 630 (after 240 days) N/A 

 𝑹𝟎 = 𝟒. 𝟓 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  1.22 1.74 1.03 

Infections 960,000 (50%) 2,000,000 (64%) 280,000 (22%) 

Hospitalisations  14,000 (35%) 29,000 (47%) 4,000 (15%) 

Fatalities 1,700 (35%) 3,700 (47%) 480 (15%) 

Peak in hospital 1,100 (after 180 days) 4,500 (after 100 days) 120 (after 310 days) 

 𝑹𝟎 = 𝟔. 𝟎 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  1.63 2.32 1.38 

Infections 1,600,000 (49%) 2,500,000 (63%) 800,000 (22%) 
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Hospitalisations  23,000 (35%) 36,000 (47%) 12,000 (15%) 

Fatalities 3,000 (35%) 5,100 (47%) 1,500 (15%) 

Peak in hospital 3,500 (after 110 days) 8,100 (after 70 days) 1,300 (after 150 days) 

Table S5. Results from an unmitigated epidemic and 90% coverage of over 12-year-olds. This 

is modelled by assuming 54% coverage of 10-14-year-olds. 

 

Deterministic SEIR Sensitivity to Other Epidemiological Parameters 
 

We consider the sensitivity of various outputs of the deterministic SEIR implementation and 

vaccinated reproduction number to other epidemiological parameters. 𝑅- = 4.5 unless 

otherwise stated. 

 
Figure S9. Sensitivity to 𝑅-, testing values between 1.5 and 7.5 in increments of 1.5. When 

𝑅- = 1.5 and 3.0, the population immunity threshold can be reached without vaccinating 

under 15-year-olds. When 𝑅- = 4.5 vaccination of under-15-year-olds is required. When 

𝑅- = 6.0 and 7.5 the population immunity threshold cannot be reached without greater than 

90% population coverage. Furthermore, as 𝑅- increases, the number of infections, fatalities, 

and peak hospital occupancy also increase. 

 



 

 21 

 
Figure S10. Sensitivity to the rate of imported cases, testing values between 0.05 and 500 

imported infectious cases per day. Until high levels of vaccination are reached (𝑅# < 1), 

differences in rates of imported cases makes little difference to the overall results, except in 

extremely high infected arrival rates (500 per day). The timing of the epidemic peak is more 

sensitive, with higher arrival rates resulting in an earlier peak. This scenario assumes 𝑅- =

4.5. 

 

 
Figure S11. Sensitivity to the mean length of hospital stay, testing values between 2 and 10 

days. This parameter only has implications on the peak hospital occupancy, with longer times 

in hospital resulting in a larger peak occupancy. In reality this likely also varies with 
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vaccination coverage as different age groups have different expected hospitalisation 

durations, although this is not considered in our modelling. This scenario assumes 𝑅- = 4.5. 

 

 
Figure S12. Sensitivity to the incubation period (mean time in “exposed” compartment), 

testing values between 1 and 5 days. This parameter only affects the timing and size of the 

epidemic peak, with longer incubation periods implying lower peak hospital occupancy and 

longer time to the peak. This scenario assumes 𝑅- = 4.5. 

 

 
Figure S13. Sensitivity to the duration of the infectious period, testing values between 3 and 

7 days. There is a similar effect in varying this as with the incubation period. This scenario 

assumes 𝑅- = 4.5. 

 

Effect of Testing and Case Isolation on Reproduction Number 
 

Results in the main paper (Table 4) on the level of vaccine coverage required to reach the 

population immunity threshold assume there are no non-pharmaceutical interventions. 
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Results from the stochastic implementation in the main paper assume that case isolation and 

contact tracing begin once a new outbreak is detected.  This is reasonable under an 

elimination strategy coupled with strong border measures designed to keep COVID-19 out of 

the community. However, due to capacity constraints, the impact contact tracing system on 

transmission would be far smaller if there were regular imported cases triggering multiple 

outbreaks simultaneously. 

 

An intermediate situation between: (i) no non-pharmaceutical interventions and (ii) intensive 

contact tracing for small, sporadic outbreaks is where there some baseline control measures 

remain in place. To investigate this, we calculated the model-implied reduction in effective 

reproduction number with: 𝑝+:5'4 = 0 (no contact tracing), 𝑝3464'6
1:4 = 𝑝3464'6

1/06 = 70% 

(significantly increased detection rates, regardless of whether or not there is a current 

outbreak), and 𝑡6:5'4 = 2	𝑑𝑎𝑦𝑠 (decreased mean time to detection and isolation). Assuming 

case isolation is 100% effective in preventing transmission, this reduces the reproduction 

number by an estimated 14% (as per equation S4 in Supplementary Sec 1) compared to no 

control. If case isolation is imperfect and reduces transmission by 80%, this reduces the 

reproduction number by an estimated 11%. This is a much smaller reduction in 𝑅 than can be 

achieved by intensive contact tracing of small outbreaks, but it does mean that effective 

population immunity (𝑅 < 1 with widespread testing and case isolation but without mass 

restrictions) can be achieved with a slightly lower vaccine coverage (Table S6).  

 

 Baseline Lower Effectiveness Higher Effectiveness 

Vaccine Effectiveness 𝑒# = 70%, 𝑒$ = 50% 𝑒# = 50%, 𝑒$ = 40% 𝑒# = 90%, 𝑒$ = 50% 

𝑅- = 3.0  63% 80% 55% 

𝑅- = 4.5  79% - 75% 

𝑅- = 6.0  93%* - 79% 

Table S6. Vaccine coverage required to achieve effective population immunity (𝑅 < 1 with 

case-targeted control such that 70% of cases are isolated an average of 2 days after symptom 

onset, with subsequent transmission reduced by 80%) for each vaccine effectiveness scenario 

at three different values of 𝑅-. Estimates assume a structured roll-out, beginning in 65+ year-

olds, then 15-64 year-olds, and finally under 15-year olds, with up to 90% of each group 
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vaccinated. Estimates with an asterisk are greater than 90%, so this is assumed to be equal 

coverage of the entire population. 

 

Stochastic Branching Process Sensitivity to Vaccine Effectiveness 
 

As we do not consider varying vaccine effectiveness in the main paper, we consider lower 

and higher effectiveness vaccines. Other parameters and assumptions are the same as in the 

“Other Outbreaks and Control” section of the main paper – these include contact tracing and 

case isolation amounting to a 43% reduction in the reproduction number. Population 

coverage is assumed to be 90% of over 15-year-olds. 

 

𝑹𝟎 = 𝟑. 𝟎 Baseline Lower Effectiveness Higher Effectiveness 

Vaccine Effectiveness 𝑒# = 70%, 𝑒$ = 50% 𝑒# = 50%, 𝑒$ = 40% 𝑒# = 90%, 𝑒$ = 50% 

𝑅"  0.98 1.24 0.90 

Infections at detection 6 (1, 58) 12 (1, 77) 3 (1, 45) 

P(elim before 1000 infs) 100% 100% 100% 

Time to elimination 12 (0, 26) 15 (0, 31) 10 (0, 23) 

Total hospitalisations 0 (0, 2) 0 (0, 2) 0 (0, 1) 

𝑹𝟎 = 𝟒. 𝟓 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  1.47 1.86 1.35 

Infections at detection 14 (1, 97) 22 (1, 142) 8 (1, 83) 

P(elim before 1000 infs) 99.7% 82.7% 99.98% 

Time to elimination 17 (0, 34) 22 (2, 42) 13 (0, 32) 

Total hospitalisations 0 (0, 2) 0 (0, 4) 0 (0, 2) 

𝑹𝟎 = 𝟒. 𝟓 Baseline Lower Effectiveness Higher Effectiveness 

𝑅"  1.96 2.48 1.80 

Infections at detection 22 (1, 154) 34 (1, 217) 15 (1, 126) 

P(elim before 1000 infs) 81.4% 61.2% 93.1% 

Time to elimination 22 (1, 44) 29 (3, 56) 18 (0, 40) 

Total hospitalisations 0 (0, ,4) 1 (0, 6) 0 (0, 3) 

Table S7. Branching process sensitivity to vaccine effectiveness against infection and 

transmission with 90% of 15+ year-olds vaccinated. Default values are used for all parameters 

(see Table 3). Median values from 10,000 trials reported with 95% confidence intervals in 

parenthesis. Probability of elimination before 1,000 infections assumes effective and scalable 
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contact tracing and case isolation takes place after detection. Time to elimination and total 

hospitalisations assume population-level controls are used in addition to contact tracing and 

case isolation. 

 

Stochastic Branching Process Sensitivity to Other Epidemiological Parameters 
 

We also test sensitivity to 𝑅-, 𝑡3464'6, 𝑝3464'6
1:4 , 𝑡6:5'4, and 𝑝6:5'4 in Tables S8 to S12. Two 

stages of vaccination are now considered: no vaccination and 90% coverage of 15+ year-olds. 

Once an outbreak is detected, population level controls are implemented so there is an 

additional 2/3 reduction in 𝑅, in addition to contact tracing and case isolation (which provides 

a 43.7% reduction in 𝑅 under default parameters). Reported values for infections at detection, 

time to elimination, and total hospitalisations are medians. P(elim) is the proportion of 

simulations that resulted in elimination before 1,000 infections, with the aforementioned 

contact tracing and case isolation operating. 

 

𝑅% 
No Vaccination 90% coverage of 15+ 

1.5 2.5 3.5 4.5 5.5 1.5 2.5 3.5 4.5 5.5 

Infections at det 13 38 66 102 138 2 7 15 21 31 

P(elim) (%) 100 61 48 41 36 100 100 100 82 65 

Time to elimination 17 33 70 N/A N/A 8 12 17 21 27 

Total hosps 1 3 16 N/A N/A 0 0 0 0 1 

Table S8. Branching process sensitivity to varying values of 𝑅-. As 𝑅- increases the infections 

at detection, time to elimination, and total hospitalisations from a mitigated outbreak increase 

and probability of elimination decreases. In the no vaccination scenario with 𝑅- = 5.5, contact 

tracing and default population level controls are not sufficient to control an outbreak, with 

𝑅4;; > 1. 

 

𝑡&'(')( (days) 
No Vaccination 90% coverage of 15+ 

1 2 3 4 5 1 2 3 4 5 

Infections at det 41 51 58 70 77 11 12 13 14 15 

P(elim) (%) 49 49 49 49 47 100 100 100 100 99 

Time to elimination 50 58 65 72 77 16 17 17 17 17 

Total hosps 7 10 12 16 20 0 0 0 0 0 
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Table S9. Branching process sensitivity to varying values of mean delay from symptom onset 

to case detection. As the delay from onset to detection increases, the number of infections at 

detection increase substantially, particularly in the no vaccination scenario. 

 

𝑝&'(')(
*+'  

No Vaccination 90% coverage of 15+ 

5% 10% 20% 50% 80% 5% 10% 20% 50% 80% 

Infections at det 175 85 38 11 6 34 17 8 3 2 

P(elim) (%) 47 47 49 52 56 99 99 100 100 100 

Time to elimination 97 78 56 30 21 21 18 14 11 10 

Total hosps 45 20 8 1 1 0 0 0 0 0 

Table S10. Branching process sensitivity to varying values of probability of detecting a 

symptomatic case before an outbreak is detected. As probability of detection increases, the 

number of infections at detection increases, as does the probability of elimination. In scenarios 

where 𝑝3464'6
1:4  is greater than the default value of 𝑝3464'6

1/06 = 40%, we increase 𝑝3464'6
1/06  to match. 

 

𝑡(+,)' (days) 
No Vaccination 90% coverage of 15+ 

1 3 5 7 9 1 3 5 7 9 

P(elim) (%) 52 49 48 48 48 100 100 100 99 96 

Time to elimination 35 44 61 85 141 16 17 17 17 17 

Total hosps 6 8 13 20 45 0 0 0 0 0 

Table S11. Branching process sensitivity to varying values of mean delay from exposure to 

detection via contact tracing. As the delay in tracing increases, the probability of elimination 

before 1000 cases decreases.  

 

𝑝(+,)'  
No Vaccination 90% coverage of 15+ 

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 

P(elim) (%) 48 48 48 49 48 95 98 100 100 100 

Time to elimination N/A 98 72 57 48 18 17 17 17 17 

Total hosps N/A 24 16 12 10 0 0 0 0 0 

Table S12. Branching process sensitivity to varying values of probability of detecting an 

infected individual by contact tracing. As this increases, the probability of elimination 

increases.  
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3. Effectiveness of the Pfizer-BioNTech Vaccine 
 

In March 2020, New Zealand confirmed the purchase of sufficient doses of the Pfizer-

BioNTech BNT162b2 mRNA vaccine to vaccinate the entire population. In this section, we 

first briefly justify our assumptions for vaccine effectiveness parameters. In the subsections 

below, we summarise published results on the efficacy and effectiveness of the Pfizer vaccine 

in the context of our model. 

 

Lipsitch and Kahn [11] argue that vaccine efficacy against viral RT-PCR positivity is a 

plausible lower bound on the vaccine’s efficacy against transmission. The studies discussed in 

the “effectiveness against infection” subsection below are all variations on effectiveness 

against viral positivity studies, suggesting a lower bound on the overall reduction of 

transmission of around 90%. However, early results suggest there may be decreased 

effectiveness against variants of concern [12, 13], and evidence is limited for the effect in 

young and old people, so we use 𝑒" = 70% effectiveness against infection and 𝑒+ = 50% 

effectiveness against onwards transmission conditional on breakthrough infection. This gives 

an overall implied transmission reduction from vaccination of 1 − (1 − 𝑒")(1 − 𝑒+) = 85% 

and is in-line with modelling from the UK [14]. 

 

The effectiveness against disease appears to be as high as 95% across many studies. We use 

80% as our baseline estimate for 𝑒7, implying overall 94% effectiveness against severe disease. 

Some studies have estimated the effectiveness against severe disease and death to be higher 

than effectiveness against mild disease (see below). However, because these outcomes are 

rarer, there is less data and therefore more uncertainty around this conclusion, particularly for 

specific age groups. 

 

Effectiveness against SARS-CoV-2 Infection 
 

Weekes, Jones [15] present evidence from healthcare workers in the UK for effectiveness 

against asymptomatic viral positivity. Data was analysed over two weeks from 18th to 31st 

January 2021 and included 4,408 PCR test-results in the first week and 4,411 in the second. 

The results found that 26/3,252 (0.8%) of tests from non-vaccinated HCWs were positive, 

13/3,535 (0.37%) of tests from those <12 days post-vaccination were positive, and 4/1,989 
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(0.20%) of tests from those >12 days post-vaccination were positive. This suggests an 

approximate 75% effectiveness against viral positivity following a single-dose. Similar results 

were found when symptomatic individuals were included. All results were for a single-dose. 

This may be evidence of decreased infection duration or decreased overall susceptibility or a 

combination of both. In any case, the vaccine effectiveness against viral positivity (or 

equivalently, documented infection), is a plausible lower bound on effectiveness against 

transmission [11]. 

 

Dagan, Barda [16] in Israel found an effectiveness against documented infection of 46% (40%, 

51%) between days 14 and 20 following the first dose, and 92% (88%, 95%) more than 7 days 

after the second. This is more pessimistic than [15] for single-dose effectiveness, but more 

optimistic long-term. This study is also based on a much larger sample size (>1m participants). 

 

Chodick, Tene [17], also in Israel, found an effectiveness against documented infection of 

51.4% in days 13-24 following the first dose. This was estimated by comparing individuals 

>13 days after their first dose with those after 1-12 days. As such, we place less weighting on 

this study. 

 

Moustsen-Helms, Emborg [18], in Denmark, found an effectiveness against viral positivity of 

64% (14%, 84%) in long-term care facility residents and 90% (92%, 95%) in healthcare 

workers. There are many caveats, but these results may suggest that reduced effectiveness in 

older individuals is plausible. 

 

Thompson, Burgess [19], in the US, found an effectiveness against infection of 80% (59%, 

90%) >= 14 days after the first dose, and an effectiveness against infection of 90% (68%, 97%) 

>= 14 days after the second dose.  

 

Abu-Raddad, Chemaitelly [13], in Qatar, found an effectiveness against viral positivity for 

B.1.1.7 of 89.5% (85.9%, 92.3%) and an effectiveness against viral positivity for B.1.351  of 

75.0% (70.5%, 78.9%) (both > 14 days after second dose). This is strong evidence for reduced 

effectiveness against B.1.351. 
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Effectiveness against Transmission given Breakthrough Infection 
 

Harris, Hall [20], in the UK, provide early evidence for additional prevention against onward 

transmission given breakthrough infection. The adjusted odds ratio for onward transmission 

conditional on being vaccinated with BNT162b2 was 0.51 (0.44, 0.59). Individuals in this study 

were considered vaccinated if they received their first dose at least 21 days prior to testing 

positive. 

 

Effectiveness against Symptomatic COVID-19 
 

Polack, Thomas [21] present the stage 2/3 clinical trial results. The primary endpoint was 

COVID-19 disease, to which the vaccine efficacy was found to be 95.0% (90.3%, 97.6%). 

 

Dagan, Barda [16] in Israel found an effectiveness against symptomatic COVID-19 of 57% 

(50%, 63%) between days 14 and 20 after the first dose, and 94% (87%, 98%) more than 7 

days after the second. 

 

Effectiveness against Severe Disease/Hospitalisation 
 

Dagan, Barda [16] in Israel found an effectiveness against hospitalisation of 74% (56%, 86%) 

between 14 and 20 days after the first dose, and 87% (55%, 100%) at least a week after the 

second. Similarly, they found an effectiveness against severe disease of 62% (39%, 80%) and 

92% (75%, 100%). 

 

Abu-Raddad, Chemaitelly [13] found effectiveness against severe (or worse) disease of 100% 

for both B.1.1.7 and B.1.351 with confidence intervals of (81.7%, 100%) and (73.7%, 100%) 

respectively. Against all SARS-CoV-2 they found an effectiveness of 97.4% (99.2%, 99.5%). 

 
Effectiveness against Death 
 

Dagan, Barda [16] in Israel found an effectiveness against death of 84% (44%, 100%) in 

individuals 21 to 27 days after their first dose. There was insufficient data to estimate this for 

individuals with multiple doses. 
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