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Chapter 1

Introduction

1.1 Quantum optics and teleportation: a brief history

‘Quantum optics' isaphrase that is used broadly to describe theories that give a quantum description of light and
light-matter interactions. We give a brief historical overview of thislarge and diverse field. See for example, [10]
and [13].

Theredisation that ‘ something’ in light-matter interactions was quantised began with work by M. Planck in 1901
with the spectrum of blackbody radiation. The hypothesis was formulated that blackbody radiation is emitted in
discrete energy packets, although at the time it wasn't immediately obvious that this was due to the quantum
nature of light itself. This hypothesis arose once more in 1905, with the description of the photoelectric effect by
A. Eingtein. An early experiment performed by G.I. Taylor in 1909 attempted to detect quantum effectsin light by
using very low intensity light sourcesin a 'Y oung's double-dlit experiment, but the resulting interference pattern
was ultimately unchanged by the low source intensity.

Quantisation of light emerged as aformal theory in the 1920’ s, with the word ‘ photon’ coined by American
chemist G.N. Lewisin 1926, to describe the energy quanta associated with light fields. Perhaps the first
experiments done in quantum optics were the now famous ones performed in 1956 by R. Hanbury-Brown and R.
Q. Twiss. These experiments arose in the course of their work in developing alight intensity interferometer for
stellar observation purposes. From a quantum point of view, Hanbury-Brown and Twiss observed a phenomenon
known as photon bunching in athermal light source. Although their results were explainable in classical theory,
these experiments were surely among the first to measure light intensity fluctuations on short time scales.

Four years later followed the invention of the laser. Though an excellent source of coherent light (one with little
variation in phase and amplitude), the properties of laser light (in particular, its photon statistics) were not
drastically different from conventional light sources of the time. Laser light didn’t have any uniquely quantum
properties. It would not be until 1963, with theoretical work done by R.J. Glauber, that states of light having atrue
guantum signature were uncovered. In 1977, H.J. Kimble, M. Dagenais and L. Mandel demonstrated
experimentally the concept of photon antibunching, sources of light where detection of a phaoton correspondsto a
reduced probability for detecting a subsequent photon. Thisis aunique property of certain states of light and is
only explainable in a quantum picture. Later, in 1985, R. E. Slusher experimentally demonstrated squeezed light.
Aswe shall see further on, squeezed light sources are among the necessary quantum-optical tools needed in
modern quantum teleportation protocols.



The focus of thisdissertation is quantum teleportation. Quantum teleportation is anotion of recent vintage, and it
wasn't born in the quantum optics realm. It was first proposed by C.H. Bennett et al. [1] in 1993, with the authors
using a spin-1/2 quantum system to demonstrate the fundamental ideas. The connection to quantum optics was
never far off, however, for the two level spin-1/2 system has plenty of anal ogies with the two level system formed
by considering orthogonal polarisations of photons. Quantum teleportation was extended not long after thisin
1994 by Lev Vaidman [6] to include teleportation of continuous variables (such as position and momentum).
Only three years would pass before quantum tel eportation was experimentally demonstrated, in 1997, by D.
Bouwmeester et al. Their demonstration essentialy followed the Bennett protocol, but used polarisation-
entangled photon pairs. Sources of such photon pairs were aready well established, and had proved useful in the
pioneering work of A. Aspect et al., commencing around 1981, demonstrating violations of Bell's Inequality.

In 1998, S.L. Braunstein and H.J. Kimble proposed a new quantum tel eportation protocol [3] that made use of
squeezed states of light. This differed from the 1997 experimental work of D. Bouwmeester in that the proposal
was capable of teleporting continuous variables. That same year, their proposal was experimentally realised by A.
Furusawaet al. [2]. This protocol, with some modifications, is the one that shall be considered for calculative
purposes in this report.

1.2 What is Quantum Teleportation?

At this point it is worth reviewing what we mean by the phrase quantum teleportation.
Firstly, without the ‘ quantum’ prefix, the perception one has of the word ‘tel eportation’ is probably best summed
up by itsdictionary definition. We follow the lead of Vaidman [4] and quote from the Oxford English Dictionary:

Teleportation. Psychics and Science Fiction. The conveyance of persons (esp. of oneself) or things by psychic
power; also in futuristic description, apparently instantaneous transportation of persons, etc., across space by
advanced technol ogical means.

In prefixing ‘ quantum’ to the above however, the situation is quite different. What quantum teleportation refers to
isthe teleportation of quantum states. By this, we in fact do not refer to the instantaneous tel eportation of
‘persons, etc.’ —i.e. matter — through a quantum teleporter.

At firgt, this doesn't quite appear to fit into an everyday perception of teleportation. A quantum teleporter is
capabl e of transporting the quantum state of a given system over some distance, but the ‘matter’ comprising the
system originally possessing this quantum stateis effectively left behind at the teleporter input. Have we redlly
teleported anything at al then?

It turns out that leaving the constituents of the original system behind is not a difficulty in a guantum mechanical
framework. Thisis because in the quantum realm, elementary particles comprising the given system are

compl etely indistinguishable from the same particles elsewhere in the universe. Lev Vaidman, whose continuous
variable teleportation protocol we mentioned earlier (of which we shall have more to say later) discusses [4]:

“According to quantum theory, all elementary particles of the same kind are identical. There is no difference
between the electrons in my body and the electrons in a rock on the moon.”

Hence, the distinguishing characteristic of a particular system is its quantum state, not the d ementary particles
comprising it. In light of this, we see that tel eporting quantum states only is perfectly sufficient; all we need to do
is‘imprint’ this quantum state on the same elementary particles at the teleporter output. Movement of matter
between the teleporter input and output is not needed — teleportation of the state is enough to consider a given
system to be ‘teleported’. To quote Lev Vadman again on the matter [4]:

“If I want to move to the moon, | need not move my electrons, protons, etc. to the moon. It is enough to
reconstruct the quantum state of the same particles there.”



The section “What is actually teleported?’ of [4] provides an in-depth discussion on the above points.
All the teleportation protocols discussed in this report are of the quantum variety, and so are in the business of
teleporting quantum states. Two points are in order here:

e Although matter comprising the original system input into a quantum teleporter isleft behind, its origina
guantum state is not. We shall see that the measurement processes required to do quantum teleportation
are destructive and do not preserve the original state at the teleporter input.

o Weshall also seethat teleportation is possible for unknown quantum states, where determination of the
state by measurement alone would be impossible. Thisis a distinguishing mark of quantum teleportation,
as opposed to ‘classical’ teleportation, where a system stateisfirst fully determined by measurement and
then reconstructed at the teleporter output.

1.3 Outline of dissertation

In[2], Furusawa et al. discuss an optical quantum teleportation protocol using squeezed light which was
subsequently implemented by the authors, with experimental results also discussed. Part of arecent doctoral thesis
at the University of Auckland [7] looked at modifying this quantum teleportation protocol to include additional
noise filtering at the output, with the aim of increasing the fidelity (quality) of the tel eportation. Some results of
this consideration are outlined by Noh et al. in [5]. For this noise filtering, Lorentzian shaped filters were
considered.

In [5] however, it isaso noted that Lorentzian filters are “far fromideal for suppressing background noise’,
where background noise arises from the squeezed light used in this particular teleportation protocol. The aim of
this dissertation isto look at possibility of using filters of other shapes at the output. Specifically, filtersutilising a
Gaussian shape are explored, and compared with Lorentzian filtering to gauge success.

We investigate the effect that these types of filtering have on the squeezed vacuum, as well as their effect on the
teleported field of resonance fluorescence, through the use of correlation functions and relevant spectra.



Thisreport is structured as follows.

Section 1
Introduction, outline and preliminaries.

Section 2

Here we introduce and discuss the origind BBCIPW protocol [1], a discrete tel eportation protocol. The
aforementioned continuous variable protocol of Lev Vaidman [6] is also discussed. These early protocols
highlight many of the fundamental ideas behind quantum teleportation. Additionally, we select the topic of
guantum entanglement and formally define this as well, for it is of great significance in quantum teleportation.

Section 3

This section begins our venture into the quantum optics arena. Relevant theory and background needed to
understand the protocol of Furusawa et al. [2] and its modifications, which form the basis of the calculative work
in thisreport, is presented.

Section 4

As mentioned earlier, the effectiveness of filtering procedures introduced into the tel eportation protocol are to be
tested by consideration of input/output correlation functions and spectra. This section presents the necessary
correlation functions for squeezed vacuum states and for the resonance fluorescence field.

Section 5

In this section the Furusawa protocol [2] is set forth, and correlation functions for the teleporter output (which
involve filtering) are derived from those in Section 4. Various plots are produced for comparative purposes, and
analytical expressions for these correlation functions and spectra are given. Aside from numerical work, these
analytical expressions give usinsights asto what happens when certain limits are taken for the parameters
controlling the teleportation.



Chapter 2

Early Teleportation Protocols

2.1 Discrete Teleportation Protocols

One of thefirst quantum teleportation protocols described in the literature is that of Bennett et al. [1], also known
as the BBCJPW protocol (to givethe letters of al the authors). We present this now.
We begin by considering a particle (labelled Particle 1) which isin some spin state

|$1) = al+1) + b|—1) (2.01)

Here |+) isthe state of spin-up, and |—) that of spin down, as usual. However, generally speaking, what we are
about to describe does apply equally well to two-state systems other than spin. The polarisation states of photons
was an example given earlier.

To perform teleportation, we have also at hand two further particles 2 and 3 in the spin-singlet state*

1
Y23) = —=(+2)—3) = |=2)|+ 2.02
[¥23) ﬁ(l 2=3) = [=2)+3)) (2.02)
which involves two correlated spins.

Alicereceives particles 1 and 2. To describe their collective state, it is convenient to introduce the Bell operator
basis, given by

[¥5) = = (012 £ =01+ (209
12 \/E 1 2/ = 1 2 .
[08) = —= () 142) £ -1 (204
12 \/7 1 2/ - 1 2 .
Equivalently,
_ 1
402 = = (%) £ 195) (205
1
12 = (|0 +1072) (208

! The spin-singlet state is also referred to as the EPR-Bohm State due to its use by Bohm in discussions relating to the famous
EPR Paradox. It is also known as the completely anticorrelated state due to the anticorrelated nature of its entanglement.
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The Bell operator basisis complete and orthonormal; this will be made clearer in Section 2.2.
Then, prior to any measurement, the total system consisting of Particles 1,2 and 3 isin a pure product state

[¥123) = [d1)|¥23)

a a b b
= —|+)4+2)=3) — =+ =) +3) + = =D+ =3) = —=|—1)—2)|+
ﬁl Dl+2)—3) ﬁl D1=2)+3) ﬁl DI+2)—3) ﬁl D1=2)1+)
(2.07)
We now expand this state in the Bell operator basis using the equations above:
1. . 1.
|W123) = > |¥12)(—al+3) + bl—3)) + > |'¥12)(—al+3) — b|—3))
1 1 __
+E|(Df2)(a|—3)—b|+3))+E|<D12)(a|—3)+b|+3))
(2.08)

At this point, the particlein state |¢) and the EPR pair are not entangled in any way. In order to couple the two,
Alice makes a measurement in the Bell basis.

We don't specify precisely the nature of Alice’ s measurement; all that we require of such a measurement isthat it
projects the state |'¥;,3) onto exactly one of the states |¥13), |'¥1,), |®1,), or |®1,), and further, that Aliceis able
to tell asaresult of her measurement which one of these states is projected onto. In practice, there may exist an
observable and operator pair whose eigenfunctions are precisely these 4 states, having a 1-1 correspondence
between eigenval ues and eigenfunctions, which happens to be experimentally realisable, but we don’t consider
such difficulties or the exact nature of this operator here.

The state describing Particles 1 and 2 (which are with Alice) then collapse into one of the 4 states |‘I’%)) or |d>%)
with equal probabilities each. Bob's particle 3 is then put into the corresponding * coefficient state’ from |¥4,3) in
Eq. (2.08).

It remains only for Bob to apply a unitary operator to his particle 3 to recover the origina state |¢,) a his
measuring station. Which unitary operator he needs to apply depends on Alice’'s measurement result (which she
sends to Bob), as seen in the following table.

Alice' s measurement State of Particle 3asa2- | Unitary operator that Bob | Final State of Particle 3
result component spinor applies

p —a -1 0 a

I¥12) ( b ) ( 0 1) (b)

¥iz) (=) (o 1) (=)

232 () G o) (“b)

a

- (W (o G)

In al cases, the final state of Particle 3 isidentical to that of the input Particle 1, up to a phase factor (exp(in) =
—1 inthe middle two cases). Other unitary operators having different phases could be used, though we have
adhered to the convention set out in [1].



As an aside, the 2x2 matrix representation of rotation is given by Eq. 3.2.45 of [15]:

o (%) ~ ing sin (%) (—in, —n,)sin (%)
(—ine +ny)sin (%) cos (%) + in, sin (%)

Here, we speak of arotation by angle ¢ about an axis specified by the normal vector i = [tx 1y, 1z]7, where
for positive ¢ the rotation is counter-clockwise about that axis. Rotations of m radians about the z, y, and x axes

thusinvolve the matrices
(‘O‘ ?) ((1’ ‘01) and (_Ol B‘) (2.10)

respectively. Up to a phase, these are precisely the unitary operators that Bob applies in the case of measurement
results |¥5, ), |®1,) and |®1, ), so that Bob's unitary operators have a physical interpretation as rotations of the 2-

level system of Particle 3. With the measurement result [¥7, ), no unitary operator heeds to be applied as indicated
in the above table.

D(m, ¢) = (2.09)

Asfor thefate of Particles 1 and 2 at Alice’'s measurement station, they end up in precisely the state given under
‘Alice' s measurement result’ in the table above. As we mentioned in the Introduction, the original state is not
preserved at the teleporter input. In fact, thisis a consequence of a quite genera result in quantum physics, which
we state now. We quote Theorem 20.1 of [12]:

The Quantum No-Cloning Theorem
There is no quantum operation that can perfectly duplicate an unknown guantum state. This holds under the
assumption that every physically permitted operation is described by a unitary transformation.

So we see that our teleporter must necessarily destroy itsinput state, in order to not violate this No-Cloning
Theorem.

Now, the BBCJPW protocal is not restricted to states of the form seen in Eq. (2.01). An interesting phenomenon
isfoundif weinput a Particle 1 that isitself entangled with an external Particle 0. Let the state be asinglet one:

1
|Wo1) =ﬁ(|+0)|_1)_ |—o)+1)) (2.11)

As before, prior to any measurement, the system (now consisting of 4 particles) isin a product state

[Wo123) = [Po1)¥23)

Sl +l=0) + 2 =)l =la) = 3 =) +l=0) = 3 [l =)l )
(2.12)
Inthe Bell Basis, thisis;
|T0123>=1|\P1+2>(i|+o>|—3>+i|—o>|+3>) 219 (Sl -2 + -l +))
V2 V2 V2 V2
#3101 (S5 Frobl+a) = Sz =obl=3)) + 3105 (= ol +5) = = o)1)

(2.13)



Alice makes her measurements in the Bell basis as before; the * coefficients' above show the measurement results.
Bob’ s application of the unitary operators listed in the above table (which act only on Particle 3, note) give the
final collective state of Particles0 and 3 as |Vg3), i.e. the teleportation scheme * swaps’ the origina entanglement
of Particles 0 and 1 to Particles 0 and 3, a phenomenon known as entanglement swapping.

2.2 Entanglement

2.2.1 Introduction

An important feature of the BBCJIPW protocol was the sharing between two observers of a state that is non-
locally correlated. In the case of the aforementioned protocal, this was the spin-singlet state of two spin-1/2
particles. Thisnon-local resource is an essentid feature of quantum teleportation protocols. In this section, we
give a systematic discussion of entangled states, which possess precisely the sort of non-local correlations desired
in teleportation. The origin of the phrase ‘ entangled states’, and their description, is attributed to Erwin
Schrodinger, who in 1935 brought them to light in discussing the infamous EPR paradox. Chapter 6 of Garrison
and Chiao [12] gives a sizable discussion on many aspects of entanglement and provided much of the background
for what follows.

2.2.2 Formal description of two-particle states

We begin with the mathematical description of two-particle states. In fact, we have aready used thesein our
description of the BBCJPW protocol, so here we backtrack alittle to define things formally. A two-particle
system of distinguishable particlesis described by treating each particle asliving in a Hilbert space of appropriate
dimension —call these Hy and Hp. Our designation of the overall two-particle system then, isasa state in the
tensor product space denoted by H, = H;®Hjg.

A product state of H; isastate of theform |A) = [)|0), where [) isastatein Hy, and |6) onein Hg. The
overall space H, then refersto all linear combinations of all such possible product states. In H., the inner product
of two of these product states is defined by

(NA) = (WP'1Y)0'16) (2.14)

where |A') = |)|6").
Let the sets{|¢,4)} and {lﬂﬁ )} be orthonormal basis setsfor Hy and Hp respectively. The set of product states
given by

{Ipad|ng): 1a) € Ha,Ing) € Hp} (2.15)

is capable of providing a basis of the product space H. This basisis also orthonormal. To see this, write |y, 5) =
| )|13), then observe that

Ko plXap) = (Dalba)nplng) = 8 obpp (2.16)
using Eq. (2.14) to perform theinner product. A general state |\¥) in H, can then be expanded over this basis as
¥) = > W L) (2.17)
alﬁ



where¥ .z = (xqp |'¥). An operator X acting on H; may likewise be expanded in terms of its matrix elementsin
thisbasis:

X =3 G Xap ) e (2.18)
a,a' BB’

We allow operatorsthat act on all of H., or onjust one of its subsystems H, or Hg. An operator A acting solely on
H, may be written explicitly as A®I to signify its effect on Hy®Hy = H - i.e., such an operator has the effect of
the identity I when applied to statesin Hg.

A important notion that shall be used later onisthat of the partial trace of an operator. The partial trace refersto a
trace carried out only over one of the subsystems H, or Hy of the global system H. For an operator X acting on
the system H, the partial trace over Hy isthe operator acting on H, given by:

Tra () = ) (g 1Xlg) (2.19)
B

wherethe sum is over all statesin the basis set {|n[,) )}. By substituting in the expansion for X over the states | x4 )
in Eq. (2.18), we get an expansion in states:

TrB00 = > (atp X1 9o N el (2.20)
B

a,a’
which shows explicitly how the resulting operator can only act on H,. Note that |)(a_ﬁ) = |¢a>|77/9 ).

When X happens to be the density operator p of the total system H, the resulting operator is known as a reduced
density operator. Its role becomes clear when we consider the expectation value of an operator 04 that acts only
onH, —itis.

(04) = Tr(p0N) = D Ut pOaltes) = ) (bl D (nglolng) |0alec) = Tra(pa0n)  (221)
a,p o B

where p, = Trg(p) isthereduced density operator found by tracing only over Hy. So we seethat p, actsasan
effective density operator for 04 - we can calculate its operator expectation using the operator p, and only atrace
over the states H,. We chose, for concreteness, to evaluate the trace using the basis |4 )-

All is precisely analogous in Hg - for an operator Oy acting only on Hg, we have

(Op) = Trg(pp0p) (2.22)

where now pg = Tra(p).



2.2.3 The Schmidt Decomposition and entanglement defined

Use of the basis states | x4 ) (Which we arrived at by using bases for H, and Hp) provides an expansion of an
arbitrary state |¥) in H, over orthonormal states, asin EqQ. (2.17). Thisusesup to Dim(H,) x Dim(Hg) (‘Dimy’
dimension) statesin is expansion. Here, we assume that we are working in Hilbert spaces of finite dimension. In
[12], it is shown that an alternative expansion

19y = > Vlan)Ig) (229)
n=1

is possible, where r < Min {Dim(H,),Dim(Hg)} , and the product states |a,, )|, ) are still orthonormal. This uses
fewer statesin its expansion.

The smallest value of r for which this expansion is possibleis called the Schmidt rank of the state |'¥) of H., with
the corresponding expansion being the Schmidt decomposition. This particular decomposition is useful for a
number of reasons. One such reason isthat the density and reduced density operators for the state |¥) have
particularly simple forms—these are:

p =D V¥ tm N @15} (] (2.24)
pa=Trg(p) = EIYn 1? lam et (2.25)
p5 = Tra(0) = ) 1% 1B )] (2.26)

See that the two reduced density operators share the same coefficients.

Now, aproduct statein H. evidently has Schmidt rank 1. We also know that, reverting now to the wavefunction
form of a product state, we have:

P (x1,%2) = Yl (x2) = dp(a, b) = [Y(@I*|Y'(b)|dx,dx, (2.27)

where dp(a, b) isthe probability that the particle described by 1 (x;) islocalised in aninterval dx; about x; = a
and the particle described by ¥'(x;) isin an interval dx, about x, = b. Because of the way that single particle
probabilities multiply in the above equation, knowledge of x; tells usnothing of x, - these two variables are
completely uncorrelated.

On the other hand, correlated states such asthe singlet state used in the BBCJPW protocol of Section 2.1 are not
ableto be written as a single product state —we say that such states are not separable. Hand in hand with this fact,
we note that such states also have a Schmidt rank larger than 1. This motivates the definition of entanglement.

Definition: Entanglement
A pure state |¥) of H. iscalled entangled if it hasa Schmidt rank > 1.

This definition may seem alittle abstract in terms of what physical consequences exist for an entangled state. We
therefore state a theorem (Theorem 6.4 of [12]) which relates entanglement to fluctuations in system operators.
Given an operator A that actson H, only, we define the operator AA = A — (A) to describe fluctuations of A
about its mean. Similarly, AB is defined for an operator B acting on Hg alone. We then have the following.

Theorem
For astate |¥) of H, fluctuations AA and AB are correlated if (¥|AAAB|¥) # 0. The state |P) is entangled if,
and only if, there are at least one pair of observables A, B having correlated quantum fluctuations.

10



So we see correlations in a quantum state goes hand-in-hand with it formally being entangled.

2.2.4 Maximal entanglement

We now briefly consider a system that does not partition into two subsystems H, and Hg. Suppose we write the
system density matrix p in the basisin which it is diagonal. Its eigenvalues then appear along its main diagonal .
Let the dimension of the system Hilbert space be n, and suppose that p has R non-zero eigenvalues. If these R

eigenvaluesare al equal (to % in order that the density operator may still have unit trace), then the state described
by the density matrix is called amaximally mixed state.

Back in the two particle system H, we say that a pure state of H; is maximally entangled if the reduced density
operators p, and pp are each maximally mixed, as defined above, with the number of non-zero eigenvalues®R in
each being equal to the states’ Schmidt rank r.

It isworth considering asmall exampletoillustrate the physics thus far described.

Example
We reconsider the spin-singlet state Eq. (2.02)

1
[¥23) =ﬁ(|+2)|_3)_ |=2)1+3)) (2.28)

at the heart of the BBCIPW protocol. Here Hy will be the 2-dimensional Hilbert space corresponding to the spin
of Particle 2; inasimilar manner Hy describes Particle 3. The full density operator is:

p= Il‘Pz'3><‘Pz"3|
= §(|+2><+2|®|_3><_3| = [+2{(=2I® =3} {+3| = [=2X{+2|®[+3H—3] + | =21 —2|®[|+3){+3])

(2.29)

This gives the reduced density operators (by performing partial traces):

1 1
pa = §(|+2)(+2| + |=20{—2D), P = §(|+3)(+3| + |=3X—30) (2.30)
Both of these have the matrix form
1/2 0

("5 1) 23

when written in their respective bases (namely {|+,), |—2)} and {|+3), |—3)}). Addtionally, the state |'¥'53) has
Schmidt rank 2 (in fact it is already Schmidt decomposed in the form written above). So we see that |¥5,3) isan
example of amaximally entangled state.

Aswe have aready mentioned, entangled states are central to quantum tel eportation. However, maximally
entangled states have a specid role —for example, it isnoted in [1] that teleportation can only be perfectly
achieved in the BBCJIPW protocol if Alice and Bob share a maximally entangled spin state. Thisis both a
necessary and sufficient condition for perfect tel eportation in that protocol. The description given of the BBCIPW
protocol in Section 2.1 used a spin-singlet state shared between Alice and Bob, which of course is maximally
entangled as we have just seen. It is possible to use states other than the singlet state (which are also maximally

11



entangled) in that protocol aswell. Use of aless-than-maximally entangled state will not result in perfect
teleportation, a concept that, with alittle adaptation depending on the teleportation protocol at hand, is quite
generally true.

Our presentation of entanglement has been brief, and defined with a view towards quantum teleportation, where
entanglement between two subsystems is needed. For example, we have not looked at entangled mixed states.
Additionally, the Schmidt decomposition definition given turns out not to extend to entanglement between more
than 2 subsystems so easily. We don’'t go into this here, however.

2.3 Continuous-variable Teleportation Protocols

Shortly after the BBCIPW protocol was established, an extension of this was proposed by Vaidman [6] involving
the use of continuous variables. In this section we outline his protocol.

The extension proposed by Vaidman involves starting with Particles 2 and 3 in the EPR state described by
|¥23) = |Q2 + Q3 = 0,P, — P3 = 0) (232)

where Q and P areapair of canonically conjugate variables, which we define below. The use of this state
highlights the departure from the BBCJPW protocol, for it involves 2 particles having correlationsin continuous
variables rather than just discrete spins.

Canonically Conjugate Variables
Let P and Q be Hermitian operators. We call P and Q ‘ canonically conjugate’ if they satisfy the canonical
commutation relation [Q, P] = iA.

See Appendix C4 of [12]. Position and momentum are obvious examples — in this case, the state |'¥,3 ) would
correpond to two particles having the same momenta at ‘ opposite’ positions +x.

We have an input Particle 1, and Alice receives Particles 1 and 2 asin the BBCIPW protocol. The state of Particle
liswhat is being teleported, and we write it as ¥(Q; ). Alice now measures the variables Q; + Q, and P; — P,,
obtaining results which we write as.

Q1 +0Q;=a Pp—P,=b (2:33)
We note that simultaneous measurement of these variables is possible because they commute as operators:
[Q1 + Q2. Py — P,] = [Q1, P1] = [Q2,P,] = 0 (234

under the assumption that operators for Particle 1 and Particle 2 commute as well. Because Q and P are
continuous variables, a and b can take on any values.

Alice' s measurement results, along with the correlations between Particles 2 and 3, allow usto eliminate Q, and
P, in Egs. (2.32) and (2.33) to see that

Q1—Q3=a, P—P3=b (2.35)

Thedistributions of Q and P for Particle 3 are now determined, and related to those of Particle 1 by the above
equations. The state of Particle 3 after Alice’'s measurements isthen precisely that of Particle 1, shifted in Q5 by
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an amount a, and also shifted in P; by an amount b. We note that (as operators), Q5 generates shiftsin P;-space,
by virtue of them being canonically conjugate — to shift by an amount z in P;-space, one applies the operator

exp <LQ—32> (2.36)
h
So the state of Particle 3 is now
iQsb
exp <QT3> ¥(Q; + a) (2.37)

where ¥ isthe same function as it was for Particle 1. Bob's action isto now apply appropriate ‘ back-shifts' of this

statein P; and Q5 upon receiving the results a and b of Alice’' s measurements, to recover the input state of
Particle 1.
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Chapter 3

Quantum Optics Aspects

We now move on to look at teleportation protocols that are based On quantum optics. Such protocols make use of
the unique properties of light only describable in a quantum treatment. We aim to cover much of the quantum-
optical background needed in the following sections.

3.1 Introduction: Quantisation of the electromagnetic field

Our first task isto look at the quantised electromagnetic field. What is presented here is covered in Sections 4.1
and 4.2 of Loudon [13], and Section 2.1 of Walls[14].
Our starting point for the quantisation of the electromagnetic field is the classical Maxwell equations

V.B=0 (3.01)

—0B
-7 3.02
VXE o (3.02)
vE=" (3.03)

€o
OF

VX B = o] + po€o T (3.04)

in Sl units; for aregion having certain current densities J and charge densities p, but without dielectrics. Use of
the electrogtatic potential ¢p and vector potential A satisfying

GY)
E=-V¢——adB=VxA (3.05)

mean that the first two of Maxwell’s equations, Egs. (3.01) and (3.02), are automatically satisfied.
Helmholtz’s Theorem tells us that an arbitrary vector field F (vanishing sufficiently quickly at infinity) can be
decomposed into transverse and longitudinal components Fr and F; as:

F=FT+FL,Whe|’eV.FT =OandVXFL =O (306)

We decompose thefields 4, B, E and J in this manner. Additionally, we work in the Coulomb Gauge, specifying
V.A = 0. The vector potential A isthen entirely transverse (in the above Helmholtz decomposition sense).
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Substitution of the potentials and use of the Coulomb gauge in Maxwell’ s equations above show that
—p

V2 =— (3.07)
€o
from the third Maxwell equation, Eq. (3.03) (thisis Poisson’s equation); additionaly we have
1 92
<c_2ﬁ - V2>A = UoJr (3.08)
10
(C—za) Vo = uoJL (3.09

by taking transverse and longitudinal components of Eq. (3.04). Note that V¢ is entirely longitudinal because
V x (V¢) = 0. We dso have:

A
__ 3.10
Br=-= (3.10)
E, = -V¢ (3.11)

Thefreefield

We now consider afree electromagnetic field, whichisonein aregion havingp = 0 and J; = 0. Fields 4, B and
E are then transverse only, though we don’t bother to write a subscript T for this. The vector potential A satisfiesa
wave equation

1 92
———V2 = 3.12
<c28t2 v )A 0 ( )
and we can determine E and B from
0A
- - 3.13
E - B=vx4 (3.13)

The above manipulations of Maxwell’ s equations are till within the classica framework of electromagnetism. It
isnow that we turn our attention to quantisation.

Our first step isto expand the vector potential A over a series of mode functions. Conceptually, we are restricting
ourselves to consideration of afree electromagnetic field in some finite volume V. We write

A(r,t) = AT(r,t) + A= (1, ¢t) (3.19)
where A*(r, t) and A~ (r, t) are complex conjugates, respectively known as the positive and negative frequency
parts of A(r, t). Such an expansion is applicableto fieldsin general. We have:

A+(7‘, t) = Z Ci Uy (T)e_iwkt (315)
k
The mode functions here are u,, (r), with the ¢;, being complex expansion coefficients. The form of the mode
functions can be found by substitution of Eq. (3.14) with Eq. (3.15) into Eq. (3.12).

Quantisation is now within our reach, and is achieved as follows: first, rewrite the coefficients ¢, in terms of new
coefficients ay, :
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’ h
= 3.16
K W 2(l)k€0 ( )

Thisisjust arescaling that makesthe a;, dimensionless. We then consider a;, and a;, not as complex expansion
coefficients, but as operators a; and a,t satisfying the usual boson commutation relations. The vector potentia is

now:
h y NN
A(r,t) = z (e (Me @kt + auj (r)elxt) (3.17)
7 Za)kEo

These operators a;, and a}: are annihilation and creation operators (respectively) for the mode described by the

index k. The operator a,t creates (adds) one photon in the mode k; a;, removes one photon from that mode. The
situation is completely analogous to that of the quantum harmonic oscillator.

Fromthis A(r, t), we can determine B(r, t) and E (r, t) using Eq. (3.13). If these are subgtituted into the classical
Hamiltonian

1 1
H= —f d3r (eoE(r, t)? + —B(r, t)Z) (3.18)
2 Ho
we get

1
H= z hwy, (a};ak + E) (3.19)
k

whichisagainidentical in form to the Hamiltonian for the quantum harmonic oscillator.

Form of the mode functions
The precise form of the u;, () depends on what boundary conditions we give to our volume V. For example, in a
cubic box of sidelength L having periodic boundary conditions, we have [14]:

2nn, . 2mn,  2mn,
+ +
L T YT

u(r) = \/ivé/lexp(ik. r), k= (3.20)

where é; (4 = 1,2) are unit polarisation vectors. As usual n,, n, and n, are integers. Herewe are using k asa
collective index to describe a particular value of A and a particular wavevector k.

3.2 Squeezed Light
Explicitly, the free electric field in the Coulomb gaugeis:

h . .
E(r,t) = E 1 %(akuk (r)e '@kt — a}:u,’; (r)e'wkt) = E*(r,t) + E~(1,1) (3.21)
0
K

We now take asingle mode of the electric field, and use the cubic box mode functions of Eq. (3.20). Then,

hﬂ)k
260V

E(r,t) =i & (aei@rt=kn) _ gl pilwrt=kn) (3.22
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We define new operators — the quadrature phase operators— asfollows:
X=a+a (3.23)
Y = —i(a, —a}) (3.24)

Thisisthe convention used in Walls [14], although it is possible to define these operators with dightly differing
factors. We then have:

hwk

E(r, t) - ZE()V

& (Xsin(wyt — k.7) — Ycos(wyt — k.1)) (3.29)

Because the a;, and a,‘: obey boson commutation relations, we arrive at the following commutator for the
guadrature phase operators:
[X,Y] =2i (3.26)

So we seethat X and Y are canonically conjugate observables (up to scaling) as defined in Section 2.3, analogous
to position and momentum. We a so have the uncertainty relation

AXAY > 1 (3.27)

where AX = /((AX)?) asusual. We now make the following definitions.

Definition.
A minimum uncertainty state of the electric field is one for which AXAY = 1.
Among minimum uncertainty states, we may further distinguish between:
0 StateshavingAX =1landAY =1
0 Squeezed states, with either:
e AX <1,andhenceAY > 1
e AX >1,andhenceAY < 1

The above definition contains the essence of what it means for a state to be squeezed — we have a state that
saturates the quadrature uncertainty relation Eq. (3.27), and has reduced uncertainty in one quadrature at the
expense of increased uncertainty in the other quadrature.

A well-known class of minimum uncertainty states are the so-called coherent states, denoted by |a) . These can
be defined in afew ways —for example [14], as the states that result when the operator

D(a) = exp(aa’ —a*a) (3.28)
for an arbitrary complex number «, acts on the vacuum state:
|a) = D(a)|0) (3.29)

This definition also implies that the coherent states |a) satisfy ala) = a|a), which itself can be considered an
alternative definition for the these states. Not only are these minimum uncertainty states, but they also have equal
uncertainty in each quadrature. The operator D (a) known as the displacement operator, for one can think of it as
‘displacing’ the vacuum state to produce a coherent state.

Thefield quadratures X and Y provide us with aform of phase space to view states of light in. Evidently, states
cannot be represented as pointsin such a phase space, because it isimpossible to have a simultaneous exact
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measurement of both quadratures, in light of Eq. (3.26). However, states can be represented as areasin such a
phase space, where the area represents states allowable under fluctuations (or uncertainties) in the quadratures.
Coherent states are then circlesin this phase space, because they have equal uncertainty in each quadrature. The
circle center is at the point ((X), (Y)), which for a coherent stateis:

(X) = 2Re(a), (Y) = 2Im(a) (3.30)

In phase space, squeezed states are not represented by circular areas, for they have unequa uncertaintiesin each
guadrature. They are narrower in one quadrature and correspondingly broader in the other. They can, in fact, be
represented by ellipses. The precise reason why they are elliptically shaped is due to the fact that these phase
space areas are actually contours of the Wigner function representing the states [14].

Squeezed states, like coherent states, can also be generated from the vacuum state by applying an appropriate
operator. In particular, we may generate the squeezed state |a, €), consisting of an ellipse of minor axise™ , and
major axise”, centered on the spot defined by Eqg. (3.30) with principle axes rotated by an angle ¢ relative to the
usual quadrature phase-space axes. Thisis done in the following manner:

la, €) = D(a)S(€)[0) (3:31)
The operator D () isasit was before. The new operator here is the unitary squeeze operator, given by:
1 1
S(e) = exp(ze*a +EeaT2) (3.32
where the complex number e sets the degree of squeezing r and the rotation angle ¢:
€ = rexp(2i¢) (3.33)

The quadrature uncertainties give rise to tangible uncertainties in the quantised electric field. We find the electric
field variance ((AE (1, t))?) is:

hwk
ZE()V

(XY + YX)
2

((((AX)Z )Sin? (gt — k.7) + ((AY)2)c08? (wy t — k.7) — ( - (X)(Y)) SnQuwyt — 2k. r)>

(3.34)

Note that if the electric field isin aminimum uncertainty state, the third term above vanishes.

It isworth looking at some diagrams to get a picture of all these concepts that we have introduced — squeezed
states, quadrature phase space, and uncertaintiesin the electric field.

We consider the coherent state |« = 2 + 0i) tobeinforceat t = 0, and we ignore the any phase - k.r inthe
field. In this state, we have from Eqg. (3.30) that (X) = 4 and (Y) = 0. We set the mode frequency w;, = 2, and
plot theinitia state in quadrature phase space, and a portion of its electric field over some time period, with the
field uncertainty AE = \/{(AE)? distributed evenly either side of the mean value for the electric field. The mean
value of the electric field is of course

(E(r,t)) = Zh:)';/ é ((X)si N(w,t — k.1) — (Y)cos(w, t — k. r)) (3.35
,/ 0

We also consider some cases where we squeeze thisinitial coherent state.
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So far, we have introduced the quadrature operators X and Y effectively in the Schrodinger picture; in the
Heisenberg picture, their time dependence means that the state in quadrature phase space orbitsthe origin at the
mode frequency wy .

In the plots below, the left-hand picture showstheinitial state described, in quadrature phase space. The right-
hand plot shows a portion of the electric field (with its uncertainty as explained above), for some timeinterval.

The state |a = 2 + 0i)
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Notice that, compared to the unsqueezed state, the electric field amplitude is better defined here. Thisisan
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In this last case, note that the electric field's phase is better defined than in the unsqueezed case —thisisan
example of a phase-squeezed state.

A rather interesting type of squeezed state isthat of the squeezed vacuum. The vacuum itself is exactly the same
as the coherent state|a = 0 + 0i). Hence, in quadrature phase space, it appears as a circle centered on the origin.
Aswith the coherent state used in the above plots, it is possible to squeeze this vacuum state. We show an
example below.

Squeezed vacuum withr = 1

P R S

Y qu

R S S

Squeezed vacuum states will be of particular interest to usin optical teleportation protocols, as we shall see.

We notein closing that for the above plots, we have just set ZZ—CV = 1 for convenience. Thisis quite generaly the
0

case, and most of the time we will just write an electric field in terms of its quadrature-phase operators as
& = £¥ + i&Y (where the quadrature operators can now carry the time dependence) without regard to an overall
constant.

3.3 Quantum optics description of a beamsplitter

As shall be seen below, beamsplitters also play an important role in optical teleportation protocols. The key
property of these devicesisthey allow usto easily produce linear superpositions of input states. It isin thisway
that they are able to create the correlated states necessary for quantum teleportation to work. See, for example,
Sections 3.2 and 5.7 of Loudon [13].

Ey (@1)

E, (44) i

Figure 1. A beamsplitter.
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Classicaly, we relate the output electric fields to the input fields via a matrix equation
53) (R31 T32) <E1>
= 3.36
<E4 Ty Ryp) \Ep (3:36)
showing that the output fields are linearly related to the input fields, with weights given by the constants Rz; /Ry,
and T3, /T,; —these are the reflection and transmission coefficients respectively, which may be complex.

We next assume the beamsplitter to be lossless —i.e., energy is conserved between the input and output fields:
|Eq|% + |E2|* = |E3|* + |Eql? (337)

From these last two equations, we can derive:

|R31 > + [Ty |* =1 (3.39)
IRiz|? + T3z |* = 1 (3:39)
R31T3, + T41R;» =0 (3.40)
We also get the result
IR311 = |R42l, T32] = Ty (341)

i.e. that the complex numbers R3; /R4, and T3, /T4; have equal amplitudes.

The above results are quite general. We simplify by taking the matrix elements of the above to be symmetric [13];
that is, R3; and Ry, are assumed to have equal (complex) phases, the value of whichis ¢y

(they aready have equal amplitudes dueto Eq. (3.41)), and likewise for T3, and T,; (with equal phases ¢7). We
then have, using Egs. (3.38), (3.39) and (3.40):

RI>?+|T|? =1 (342
RT*+TR*=0 (343

where R = [R3q| = |Rgz| and T = |Tz;| = [Ty .
A final smplification occurs when the above is used to describe a 50/50 beamsplitter —thisis one for which R

and T have equal magnitudes:

1 1
IR| =5 IT| =5 (3.44)

whilst the phases ¢ and ¢y differ by /2 ¢p — pr = 2.
In fact, we will only be considering beamsplitters of thistypein this report.

From a quantum optics perspective, the input fields have corresponding annihilation operators @; and a,, and
output operators d; and d,, as seen in the diagram. These take the place of the electric fields in Eq. (3.36):

a3) _ (R31 T32) (&1> 345
<ﬁ4 Ty Ryp/\@p (343
In the symmetric case described above, we have d; = Ra; + Ta, andd, = Ta, + Ra,. The usua boson
commutation relations hold for the input field operators:

la,al] =1, [aya}]=1 (3.46)
Additionally, operators 1 and 2 are taken to be commuting. For the output field operators, we have
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[as,a1] = [ Ra, + Tay, R*al + T*a}] = RR*[4y, & + TT*[ay,al] = IRI? + |T|? (3.47)
Likewise
[a4,a}] = [T, + Ra,, T*al + R*a}] = [R|? + |T|? (3.48)

And hence, in order to have the boson commutation relations hold for the output field operators as well, and by
requiring operators 3 and 4 to commute (in the same manner that the input operators do), we find that

IRI*?+IT|* =1 (3.49)
RT*+TR* =0 (3.50)
which areidentical to Egs. (3.42) and (3.43) describing the classical case.

In the classical case described above, energy was conserved at alossless beamsplitter. In the quantum description,
it might be reasonable on physical grounds for one to expect total photon numbers to be conserved at alossless
beamsplitter; thisisindeed the case. To see, we write the number operators for the output fieldsin terms of
operators for the input fields:

fiy = atd; = (R*al + T*al)(Ra, + Ta,) = |R%ala, +|T|%ala, + R*Tala, + T*Rala, (351
and likewise for 71,. We then have:
fis + Ay = [IRI> + |TI?1(al @, + ala,) + [R*T + T*R](@]a, + ala,) = Ay + i, (3.52)

where we have used Egs. (3.49) and (3.50).

3.4 Balanced Homodyne Detection

Balanced homodyne detection is yet another essential ingredient in optical teleportation protocols. We look into
this now. What followsis taken from Section 6.11 of Loudon [13].
Consider the setup below.

a - Signal

Figure 2. Setup for homodyne detection. The ‘D’s are detectors.
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A 50/50 beamsplitter (as seen in the previous section) has two sources of light incident on it. Oneis asignal
source, whose properties we wish to investigate. We associate with its field an annihilation operator a(t). The
other isalocal oscillator source, having annihilation operator d; (t). We ensure that the frequency w; of the local
oscillator matches up with that of the signal source.

What we want to consider isthe signal corresponding to the difference in intensities of the two detectors, which in
a quantum description amounts to differences in photon numbers detected over some observation period T. The
annihilation operators for the two output branches of the beamsplitter are as defined in the diagram. This photon
number difference is represented by the operator

t+T t+T

(ag(t')a3(t') - a}(t')a4(t'))dt'= i J (a*(t')aL(t') —af(tha(t))de'  (359)

t

M(t,T) = f

t
The second equality comes from using the beamsplitter relations Eq. (3.45) for the symmetric beamsplitter to
express the output operators in terms of the input ones. The balanced homodyne photocount isjust the expectation
value of this: (M(t, 7)). We assume for simplicity that the detection process has unit efficiency.

Our genera picture of the local oscillator isthat it is a strong, coherent signal. We thus model it with a coherent
state |a(t)). Let the state be initiadly |a(0)) = ||a|e® ), where in this |ast we wrote the complex number « in
terms of its magnitude and phase. Then, at alater time, we have |a(t)) = ||a|e!C©1t*)). Now being a coherent
state, thisis an eigenstate of a; (t"). We hence find that

t+T
(M(t,7)) = i|a| f (@t (thelot+0) _ g(¢"ellwrt=yqe! (3.54)
t

But now since we have chosen the local oscillator frequency to match that of the signal frequency, thislast is:

t+T t+T
(M(t, 7)) = ilalf (@te!® — gel=0)qdt' = ilalf (@' —a)cosO +i(a" +a)sin6dt’  (3.55)
t t

once we input the time dependence of the signal creation and annihilation operators.

Hence we see that by altering the local oscillator phase 8, we are able to measure values proportional to the
guadrature expectation values - see Egs. (3.23) and (3.24) defining the field quadratures.

It may be unclear why the local oscillator needs to be astrong signal. Thereasonis that allowing the local
oscillator amplitude || to be large generally results in alarge signal-to-noise ratio for the homodyne signal (i.e.,
the differencein signal between the two detectors), which is desirable. See Loudon Section 6.11 [13].

Thisisinteresting situation. We have aready seen in Section 3.2 that the field quadratures are canonically
conjugate variables, like position and momentum. We also know that a pair of canonically conjugate variables,
when measured appropriately, can achieve continuous variable quantum teleportation, as in the VVaidman protocol
of Section 2.3. The balanced homodyne detector shows us that measurement of these variables can be physically
realised in a quantum optics setup with relative ease. It is exactly thistype of detection that is used to perform the
measurements necessary in optical teleportation protocols.
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3.5 Correlation Functions and Classification of Light

The quantum view of light is essentially one which realises that light consists of energy quanta— photons. We'll
skirt over any difficulties in defining what photons actually are at present, athough an excellent discussion on this
point can be found in the Introduction of Loudon [13]. It is enough to think of them as energy quanta. Thisview
isn't at odds with the classical view of course, which isthat states of light are superpositions of perfectly coherent
waves (i.e., waves of well defined phase and amplitude). The link is made by associating photon numbers with
light intensity. The classical coherent waves, or their superpositions, can be viewed as the average behaviour over
many photons. However, we shall see that the converse is not true. There exist states of light, describablein terms
of photons, that cannot be described classically (i.e., as a superposition of coherent waves).

With thisis mind, we now turn to look at photon statistics. Photon statistics provide us with one possible means of
‘classifying’ light. Our benchmark for perfectly stable light will be the usua classical one of a coherent

el ectromagnetic wave of unchanging and well-defined phase and amplitude. By considering alength L of a beam
of such light, and asking what the probability P(n) of finding n photonsinitis, wefind that P(n) obeysa
Poisson distribution —that is, one having standard deviation An = Vi, where 71 is the mean number of photonsin
thelength L [10].

So a Poisson distribution pertains to light of perfectly constant intensity. One can see then, that if there are any
intensity fluctuations in the light, we expect to obtain correspondingly larger fluctuationsin photon numbers than

V. Accordingly, we may classify light by its photon statistics in the following manner. Light is:

e Sub-poissonian if An < v
e Poissonian if An = /il
e Super-poissonian if An > vn

See, for example, Chapter 5 of [10].

Photon statistics are useful because of the connection between photon numbers and intensity. The photon statistics
of agate of light give us ameans of comparing intensity fluctuations to those found in perfectly coherent light.
There are many examples of super-poissonian light. One such example is blackbody radiation. A single mode of
the radiation field of blackbody radiation has

An = /71 + 72 (3.56)

which is evidently super-poissonian [10]. Here we are considering photon numbers in each mode of the field,
rather than in abeam of length L. This result was mentioned in the Introduction of this report, with respect to the
experiment of Hanbury-Brown and Twiss. Another interesting example is that of the squeezed vacuum. For such
astate, we find [14]:

An = \/ﬁ(l + cosh(2r)) (3.57)

which is again super-poissonian when r # 0. Herer is the squeeze parameter introduced earlier, in Section 3.2.
Sub-poissonian photon statistics have no classical analogue, for it isn’t possible to consider electromagnetic
waves that are more stable than the single coherent one having Poissonian statistics.

We now move on to look at the field correlation functions. There are two that are of chief significance for light;
these are correlationsin the electric fields, and correlations in the intensity. We begin with the former.
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Classicaly, the degree of first-order temporal coherence is given by [13]:

(E"(O)E(t + 1))
® =

9+ (1) EOED) (3.58)
The denominator is solely a normalisation convention, and al physica significance isin the numerator —we are
considering the correlation between the electric field at time ¢, and at alater time t + 7. Implicitly, we are talking
about stationary states here, where the value of g(» depends on the time difference t only, not on the
measurement time t. The average value (... ) isthen taken to be an integral over along timeinterval T, normalised
by the length of that interval.

What physical meaning are we to derive from the value of g™ (7)? Well, evidently g (0) = 1 inall cases. The
classical picture of amonochromatic, perfectly coherent light sourceis, as mentioned, one with perfectly stable
amplitude in phase. For such light, g (7) = 1 for all times .

Thisis not the case for most light sources, which are realistically coherent only over afinite period of time,
known as the coherence time 7. For such sources, g (1) is close to 1 on timescal es comparable to 7., however
inthelong run, it decaysto 0 when T > 7., corresponding to the fields E(t) and E (t + t) being uncorrelated. So
the ‘closeness of g™ (1) to 1 or 0 measures the light's coherence, or incoherence (in electric fields) respectively,
over thetimeinterval .

A quantity that shall be of interest to usisthe Fourier transform of the first-order correlation function, in the
variable 7. It is shown in Section 3.5 of Loudon [13] that the Fourier transform of the first-order correlation
function gives us the normalised power spectra density of the light. This connection is aform of the Wiener-
Khintchine Theorem.

The next correlation function that isimportant is the degree of second-order temporal coherence, given by [13]:
(IWIt+1) (E*OE (t+DEE+DE(®))
(I(D))? (E*(DE®))

Once more, the denominator is a normalisation constant. To be clear, note that I refersto the long-time average
light intensity in the manner

gd(7) = (3.59)

I(t) = %EOC|E(t)|2 (3.60)

That is, I isformed by fixing t and averaging over many cycles of the field having (fixed) electric field
magnitude|E (t)|. In contrast, the angular brackets{... ) refer to an average over t, where this field magnitude may
vary.

Again, we ask what physical meaning can be derived from the value of g (). With perfectly coherent light as

our benchmark, we find that g(®)(7) = 1 for all values of 7, because such light has no variation in time of

intensity. On the other hand, consider light that does have some variation in intensity. We write the intensity as
1(t) =(I) + AI(t) (3.61)

i.e., as afixed mean value plus some fluctuation. It follows that
(IOI(t + 1)) = (I)? + (AI(O)AI(t + 1)) (3.62)

where we note that the fluctuations AI(t) and AI(t + t) have expectation value zero. Hence:
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(I +(AI(0))
(I)? B
So light that isn’t coherent has a g (0) larger than that of coherent light (i.e. 1). Note that thisisn’t necessarily

true in a quantum description of light.
Classicaly, we also find that g®(z) has the following property [13]:

0<9@() <g@(0) (3.64)

g(2) 0) = (3.63)

for T #+ 0. That is, the second order correlation function never exceedsitsvaueat v = 0.

Now, we find that theinital value g(®(0) of the second order correlation function gives us another way of
classifying light, instead of using photon statistics. We call the light:

e Bunched, if g (0) > 1
e Coherent, if g(0) =1
e Antibunched, if g®®(0) < 1

Once again, see that antibunched light is not possible in a classical description of light, where the inequdity given
above (Eq. (3.63)) must be obeyed. We note in passing that the definition above for antibunched light is not the
only one possible, but it is the definition used in this report. We have effectively defined antibunched light as light
violating the classical inequality Eq. (3.63). Some authors (for example Loudon [13]) consider antibunched light
to belight violating the other classical inequality above, Eq. (3.64). These two definitions are not equivalent.

This 3-fold classification of light is not equivalent to the 3-fold one found using photon statistics [10]. However,
we shall shortly introduce a parallel between the second-order correlation function and photon distributions.

We haven't yet mentioned anything about a quantum description of light, in particul ar, the quantised nature of the
electric field seen previously hasn’t yet been brought up. One may ask how the correlation functions Egs. (3.58)
and (3.59) change in the quantum picture. In fact, thereis not much change in their form, and our interpretations
of their values remain the same. We simply need to replace E with the positive frequency part E* of electric field
operator (see Eqg. (3.21)), which we saw when the field was quantised, and E* with the Hermitian conjugate of this
operator, namely E~.

There is one dight caveat here though. Classicaly, the quantities E and E* can be multiplied in any order — of
course, they commute. The operators E* and E~ don’t have this property, for they contain boson creation and
annihilation operators, so the question arises as to what order we should write these operators down. In fact, we
provided the correct order when we defined the correlation functions above. This particular order is known as
normal ordering of the operators. Normal ordering of a group of operatorsis performed as follows:

e Creation operators should be written to the left of any annihilation operators.
Where two creation operators are in a product, but at different times, the later time operator should appear
to the right of the earlier time one.

e For two annihilation operatorsin a product at different times, the later time operator should appear to the
left of the earlier time one.

We use the symbols : : when anormally ordered operator product is to be explicitly indicated. In writing down the
second order correlation function, we don’t generally bother to include them, for if we taket > 0 then the
numerator as written in Eq. (3.59) is always normally ordered. Note that the definition of the second order
correlation function implies the symmetry

gD = g@(-1) (3.65)
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so we need only consider T > 0 anyway.

It isinteresting to note that in spite of the similarity to the classical picture, going over to the quantum description
means that the classical inequalities

9@ < g®(0) (3.66)
gP ) =1 (3.67)
are not necessarily true at all. It isin thisway that a quantum description of light can access states not describable

by aclassical picture.

A small specidlity isto be made here with respect to our correlation functions. All of the correlations we will end
up considering (for example, in the next chapter) are of the steady state type, in the sense that along time limit is
taken. We use a subscript ss notation to indicate this:

(A(t)B(t"))ss = Jim (AT + t)B(T +t")) (3.68)

So, for example, thefirst order correlation function in a quantum description in this long time limit would be
written

(E7(D)ET(0))ss
(E=(0)E*(0))ss

Taking such along-time limit meansthat correlations(... ), are only ever dependent on time differences.

gV = (3.69)

Photon Antibunching

We work only with steady-state quantities (in the sense of long-time limits and Eqg. (3.68)) in what follows, as
signified by the subscript ss.

The beauty of photon statisticsis that they allow us to see what is happening with variationsin the light intensity,
due to the direct link between photon numbers and intensity. The correlation functions defined above may not

afford such an easy physical interpretation —in particular, we are referring to the value g§§> (0) which we stated
was an alternative way of classifying light. Aswe noted before, the photon statistics and second order correlation

function classifications of light aren’t necessarily equivalent. It istrue that our antibunching condition gs(f)(o) <
1 implies sub-Poissonion photon statistics for short counting times [8]. However, these conditions are not

equivalent in general. Here we explore then, what implications the antibunching inequality gs(f)(O) < 1 has.

The meaning that gsf) (0) < 1 can befound by looking at an associated quantity — the waiting time distribution
wg, (1) asdefined in [8]. The waiting time distribution gives the probability distribution governing how the time
interval s between photon detection pulsesin a detector are distributed. That is, w(t) isthe probability that a given
time interval between two sequential photopulsesis of length t. We introduce this because we have the important
equivalence [8]:

92(0) < 1 & W (0) < Wy (0) coneent (3.70)

That is, antibunched light has a reduced probability of having successive photon counts (i.e., ones with zero wait
time between them) than does coherent light of the same intensity. Loosely speaking, thisimplies an inability of
the photons to *bunch’ —i.e. become very close together — hence the name * antibunching’.

The field of resonance fluorescence is an example of a state of light satisfying our antibunching condition. We
have plotted g @ (1) for the resonance fluorescence field in Section 5.3.
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It isshown in [8] that, for perfect collection and detection efficiencies, the waiting time distribution for resonance
fluorescenceis given by

Wgs (T) = Yexp (_ g) % (1 — COSh(5 ’T)) (371)

On the other hand, coherent light of the same intensity has a waiting time distribution:

y( Y? y( Y?
W (T) = §<1 n Y2> exp <—§<1 n Y2> 1:) (3.72)

Being probability distributions, we have the usua normalisation conditionin all cases:

f OOWSS (Ddr=1 (3.73)
0

where we note that w,,(7) = 0 for T < 0. We sample from these probability distributions a series of photopulse
interval times®. These are shown below.

| | | | | | | |
0 10 20 30 40 50 60 70 80 %0 100
t

Figure 3. A series of photopulses from the coherent waiting time distribution above. We have taken Y2 = 1 and y = 1.

0 10 20 30 40 50 60 70 80 90 100

Figure 4. A series of photopulses from a resonance fluorescence waiting time distribution with Y2 = 1 and y = 1.

The meaning of ‘antibunched’ in quite easily visualised here. One sees that that the spacing of photopulse
intervalsin the antibunched photopul se sequence is considerably more regular than that of the coherent source. In
particular, it lacks photopulses that are very close together.

2 Sampling can be done with the use of the cumulative density functions W, (t) = f_tm w, (t)dT; thisis the method we have

used. These are W, () =y szZz—l {3 (1 &P (_ %)) * 25'21_7_z (y —ep (_ %) (25'sinh(8't) + ycosf1(5’t)))} for
2

2
resonance fluorescence, and W, (t) = 1 — exp (—%(1:},2

) t) for coherent light.
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Chapter 4

Correlation Functions

Certain correlation functions are needed in order to quantitatively implement the Furusawa protocol [2]. We
present these now.

4.1 For squeezed vacuum fields
We have met squeezed vacuum states in Section 3.2. There are two types that we are interested in:

e Vacuum states squeezed in their X quadrature (i.e., with reduced fluctuations in that quadrature), the
electric field of which wewriteas Egpp, -
e Vacuum states squeezed in their Y quadrature, whose electric field we write as Egpp, -

Thereisasdlight change in notation here —the symbol € in fact refersonly to E*, the positive-frequency
component of the electric field in Eq. (3.21). This should be noted in all that follows.

We then have the following correlation functions [7]:

Ys( A s A rsgwa
(gbtPRx (DEeprx (0))ss = Zs(me 2 (-l ~112¢ 2+ )lrl) (4.01)
(EXpry (DErpry (0))ss = (Elpry (V) Exprr (0))ss (4.02)

_y A Vs 1-1 A Vs 142
(Ehprx (DELpRy (0))ss = Ts(me z (=0l t137¢° ar )'T') (4.03)
(Epry DELpRy (0))ss = —(Efppy (DELppe (0))ss (4.04)

Here y, isthe squeezing bandwidth, and 0 < A < 1 isaparameter that controls the degree of squeezing —it hasa

similar role to the parameter r we introduced for squeezed states. AsA — 1 the squeezing becomes perfect.
These correlation functionsare valid for all —o < 7 < .

The corréation functions given here have in fact been derived for a specific quantum-optical device, known as an
optical parametric oscillator. Such a device consists of a‘pump beam’ directed onto a non-linear crystal, whichis
capable of converting thisinto squeezed vacuum states. We don't provide a description of the optical parametric

oscillator here, but note that thisis one important method by which squeezed vacuum states are generated in

physical teleportation setups. Thisiswhy the correlation functions are expressed in terms of the parameters 4 and

¥s, rather than parameters like r and ¢ seenin Section 3.2.
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For the optical teleportation protocol of Furusawa et al. that we will be considering closdly, the following linear
combinations of the fields Egpg, and Egpg, Will also be of importance:

1
&y = ﬁ (gEPRx + gEPRy) (4.05)
1
€p = —=(Eeprx — Errry) (4.06)
V2

We may relate correl ations between the fields £, and €5 back to the correlations between Egpg, and Egpy,; for
example, we have:

(Ea@EF(0))ss = (Efpry (D Eppry (0))ss + (D) (4.07)
(E(IER(0))ss = (Efpry (TDEfpre (0))ss (4.08)
(EF@ET(0))ss = (Ebpre (DELpre (0)ss (4.09)
(EL@ER(0))ss = (Ebpre (DErpRx (0))ss (4.10)

These are just computed directly from the definitions of £, and €5 in Egs. (4.05) and (4.06), and the fact that all
steady-state correlations (... ), depend only on time differences. To illustrate, we show Eq. (4.08):

1 1
(Ea(@ER(0))gs = <ﬁ (SEPRx () + gEPRy (T)) ﬁ (gEPRx 0) - gEPRy (0)))55
1 1
=5 (Eeprx (T EEpRx (0))ss + 5 (Eepry (T)EEPRy (0))5s

= (Eeprx (T EEprx (0))ss
= <ggPRx (T)gbtPRx (0))ss

The second inequality follows from the assumption that the fields Ezpg, and Epg,, are uncorrelated; hence we
have (Egpry (T)Egpry (0))ss = 0, and so on. The third equality comes from Eq. (4.02).

The forth equality comes from the steady state assumption and from the fact that correlation functions are evenin
T; explicitly:

(Eeprx (T)EEpRx) = (Eppry (T)EEpry )" (because the correlation functions are red)
= (Ebpry Ebprx (©)
= (Efop (=T)E}pr, ) (by the stationary condition)
= (&l ppy (DELpR,)  (sincethe correlation functions are even in 7)

The appearance of the deltafunction in Eq. (4.07) is due to the antinormal ordering of the operatorsin that

correlation; exchanging their order costs a delta function which can be thought of as arising due to vacuum noise

[7].
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4.2 For resonance fluorescence

Testing of the central teleportation protocol of this report will, anong other means, be done by teleporting the
scattered field of resonance fluorescence. Thisfield is of historical importance; it wasin 1975 that H.J.
Carmichael and D.F. Wallsfirst predicted that photon antibunching (asin Section 3.5) would be observed in such
a system, thus providing a physically realisable means for observing this unique quantum phenomenon. Thiswas
in fact precisely the system used by H.J. Kimble et al. in 1977, mentioned in Section 1.1.

We outline the quantum description of this system here. What followsistaken from [8].

It is possible to quote directly from [8] the correlation functions for the field of resonance fluorescence. However,
we would aso like to obtain correlation functions for the X and Y quadratures of thisfield. Doing so requiresa
minor modification of the calculation giving the field correlation functions, but it is necessary to trace the
calculation through properly in order to do this. We choose here to start essentially from the beginning.

Our model of the atom is as atwo-level system, having states | 1) and |2) with energies E; and E,. The atomic
Hamiltonian is
1 1
Hy =5 hwa(12X2] = [1)(1]) = 5 hwyo, (4.11)

which takes this form due to the fact that we have shifted the zero of energy to be exactly halfway between E; and
E,. We dso introduce the atomic raising and lowering operators

o, =[2K1],  o_ =[1){2] (4.12)

The use of ¢ to denote these operators here is not accidenta; the three operators o, 0, and o_ have analogies to
the usud three Pauli spin matrices - hence they are sometimes referred to as pseudo-spin operators.
The expectation values of these operators relate to the elements of the system density operator p:

(0,) =Tr(po,) = (2|pl2) — (1lpl1) = p22 — P11 (4.13)
(o3) = (1lpl2) = p12 (4.14)
(0_) = (2lp|1) = px (4.15)

The resonance fluorescence system consists of atwo-level atom excited by a strong incident laser mode whose
energy matches the energy difference E, — E; between the two levels(i.e., ison resonance). The treatment of this
system is as aquantum open system. This works as follows. We need to alow our system (i.e., thetwo level atom
and laser) to interact with some form of external environment. Thisis done by considering the system S to be
coupled to alarge environmental system R (also called a reservoir) by some interaction. We describe the situation
with atotal Hamiltonian

H :H5+HR +HSR (416)

where Hy and Hy are the system and reservoir Hamiltonians, and Hgy describes the interaction.
We are interested in the system dynamics, and not that of the reservoir. The total system has some density
operator, which we call y, which obeys the differential equation

dy 1

R 4.1

a ~wmh Al (417
with H given by Eq. (4.16). From y we can, as usual, calculate operator expectation values and the like. But for

operators that act only in the portion S of the total system, these quantities need only be calculated with the
reduced density operator, which we met in Section 2.2.2:
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p(t) = Trp[x(0)] (4.18)

By performing the trace here over the reservoir states appropriately, we can derive a differential equation
describing the time evolution of p only, without having to find y. Thisis known as the master equation for the
system S.

In the case of resonance fluorescence, we have a system Hamiltonian:
1 ) .
H, = Eha)AaZ — dE(e7'0atg, + e'®atg_) (4.19)

Thefirst term hereisthe 2-level atomic Hamiltonian seenin Eq. (4.11). The second term is due to the laser-atom
interaction. We have treated the laser electric field classically, with this explicitly time-dependent Hamiltonian.

The laser field at the atom side was taken to be E = é2Ecos(wyt + ¢), and the interaction energy isthen - d. E,
written down in the electric dipole and rotating wave approximations.

The reservoir with which our system interacts is simply the many modes of the electromagnetic field, whose
Hamiltonian we write

Hp = Z hw Ty Tha (4.20)
%

where the operators r and r* are precisely the photon annihilation and creation operators as seen before, for the
given mode k, 1.
The system-resevoir interaction Hamiltonian is given by

Hgp = Z h (K,’;Ar,ba_ + Kp ) Ti 0 ) (4.21)
k2

where the k are coupling constants that dictate the strength of coupling to each mode k, 1.
From these Hamiltonia, it is possible to perform the reservoir trace explained above. We just quote here the result
- the master equation for resonance fluorescence is given by:

d iw i . .

d_/Z __ TA (5, p] + = [e-iata, + et@atg_ p] + g (20_po, —,0_p— po,a.) (4.22)
Herey isthe Eingtein A coefficient for the two-level atom, and Q the Rabi frequency (which effectively setsthe

strength of the driving laser).
A full derivation of thiscan befoundin [8]. It is quite common to abbreviate the master equation as

dp
ar_ 4.23
ac =P (4.23)

where the operator £ is known as the Liouvillian.
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By sandwiching the master equation between states (1] ... |2), (2] ... |1) and the like, and making use of Egs.
(4.13), (4.14) and (4.15), we can abtain time evolution equations for the operator expectation val ues:

d o
T(0) = lg(0,) + i 4 () = 2 (0) (4.24)
d Q
(o) = —iwylo) + i et (a,) - gw_) (4.25)
%«;Z) = iQe @4t (g, ) — iQe!®4 g ) + y((g,) + 1) (4.26)

For the system at hand, these are the Optical Bloch Equations. We can remove the explicit dependence on time by
defining new operators:

(Gy) =(op)e™'at,  (G.) = (o )l (4.27)

The operator g, isleft unchanged. Then we decompose these operatorsinto a steady-state value, plus a fluctuating
part:

5-+ = A5-+ + <5-+)ss: G- =Ad_+ <5-—)ss: 0, = AO_Z + (O-Z)SS (428)

much in the same way that was done in Section 2.2.3.

Now it turns out that we are interested in the operator correlation function (6, (0)5_(t)),s. Note that as written,

thisis an atomic correlation function (involving atomic operators) rather than one for the field. However the two
are certainly linked, as we shall see in Chapter 5. With the decomposition of Eq. (4.28), this correlation function
will congist of two parts:

o (0y)s(F_)ss, iNdependent of T
o (AG,(0)AG_(1))ss, dependent on T

Upon taking the Fourier Transform, thisfirst part will give a deltafunction —the coherent spectrum —whilst the
remaining term gives the incoherent spectrum. The incoherent spectrum is the part we are interested in. We now
need equations of motion for the A operators; they follow immediately from the Optical Bloch Equations Egs.
(4.24), (4.25) and (4.26):

/_Z i
2
£ [0 | | (e
- (aéy) =1 o -3 im (AGy) | = M| (AG,) | = M(As) (4.29)
(Ac,) k‘ﬂ w ) (Ac,) (Ac,)
V2 2
In dealing with the resonance fluorescence spectrum, it is convenient to define the parameter
Y=@ (4.30)
|4

This has been used in writing Eg. (4.29), note.
Now Eg. (4.29) shows us that, for the set of operators AG_, Ad, and Ag,, the time rate-of-change of operator

expectation values are linear in the operator expectation values themselves. Such a situation is amenable to
analysis under a useful theorem known as the quantum regression theorem.
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The Quantum Regression Theorem
We give the statement of this theorem as seen in [8]. Suppose there exists a set of system operators 4, u =
1,2, ..., which are complete. By this, we mean to say that for an arbitrary operator 0, we have the following:

Trs(4,(£0)) = > M, Trs(4;0) (431)
A

for each u, where £ isthe master equation Liouvillian of Eq. (4.23). The M, are constants. It followsthat these
compl ete operators satisfy the following:

d
-7 (4) = M(a) (4.32)

where M isthe matrix having elements M,,; , and A is a column vector of the operators 4,,. Then, the quantum
regression theorem is the statement

% (0, (DA(t + 7)) = M(0,(DA(t + 7)) (4.33)

where 0, is an arbitrary operator acting on the system (not the reservoir) alone. Thislast isvalid for ¢ > 0 only,
note.

Loosely speaking, we are allowed to ‘multiply’ Eqg. (4.32) by the operator 04, take it inside the expectation value
brackets, and consider the lot as anew differential equation in t rather than t. The quantum regression theoremis
significant, as acommon way of finding operator correlation functionsisto solve the differential equation Eq.
(4.33) arising from the regression theorem’ s application.

‘The’ regression theorem is alittle misleading, for the quantum regression theorem has many different forms. We
have presented the form most relevant to the situation at hand.

We apply it immediately. We see that three operators Ag_, Ag, and Aag, satisfy Eq. (4.32); it turns out that they
are also complete in the sense of EQ. (4.31). The quantum regression theorem then applied to Eq. (4.29) thus
gives.

% (A6+ (O)AS(T))SS = M(A5+(O)AS(T) )53 (434)

which isadifferential equation in z. The vector s(t) isthe column vector of operators [o_, o, 0,]". This
differential equation has solution:

(AG,L(0)As(7))ss = S~ exp(AT)S(AG, (0)As(0))ss (4.35)
where S isamatrix that diagonalises M, and A is the resulting matrix of eigenvalues. Explicitly,
1 1
2v2 22
V21 vy Y21y 1 y Yy Y Y
A= —l—(—+—) l—<—+—) -——Ilo - i—I{1 ;2L ;¥
\ EZ 285 EZ 285 za)ky Yz zﬁ)k N2 2\/7)
2/1 vy 2/1 vy 1 Ly Ty |4 Y
—f— =) | — === — i— i— — 0 —-6 )
lw(z 86) le(z 86) 26 vz 'z 7 4 4
S M S—l
(4.36)
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Thisgives:

Y
3 0 0
3
A= 0 —Ty +5 0 (4.37)
3y /
\ 0 0 7 )
The constant § is given by:

5= g 1—8y? (4.39)

It remains only to find the ‘initial condition’ (AG, (0)As(0)),. Thisisgiven by [8]:

(A&+(O)A&—(O))ss 1 YZ Y2
(AG(0)As(0))ss = [ (AG1(0)AGL(0))ss | = Em( 1 ) (4.39)
(AG;(0)Ad,(0))ss iv2Y

Eq. (4.39) is obtained by solving the Optica Bloch Equations and taking the steady state solution.

We at last have our correlation functions:

1 v?
(A5 (0)AF- (D)5 = 7777700 (~37)

11/—2(1—1/2 +(1—5Y2)l)exp(—(3—y—5)r)

- 8(Y2 + 1)2 48 4
1 Y 3
_§m(1 —Y2—(1- SYZ)%)exp(— (Ty+ 5)1)
(4.40)
We aso have:
(A6, (0)AG, (T))ss = %Yzy—j_le)(p (_gf)
2
;(YZY+ 1)2 (1-r+a- SYZ)I_(S) eXp(_ (9% - 5) T)
2
egeli-r 05 Ben(-(240))
(4.42)

Thisisidentical to the correlation function Eq. (4.40), but for the sign changesin the second and third terms. We
shall seelater that this correlation function is used to calcul ate the af orementioned quadrature correlation
functions. Looking ahead, we shall find that because the sign changes between the two correlation functions Eq.
(4.40) and Eq. (4.41), one quadrature correlation function will carry the central resonance fluorescence peak,
whilst the other quadrature correlation function will carry the flanking sidepeaks.

Both of these correlation functions are real, in spite of the fact that 6 can be complex for Y sufficiently large (see
Eq. (4.38)). To see this explicitly, note that whenever § is complex, it is purely imaginary, and in this case the
second and third termsin Egs. (4.40) and (4.41) are complex conjugates, which evidently sum to area number
for each correlation function.
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Now it is clear that, upon taking the Fourier Transform of the correlation function Eq. (4.40) (which corresponds
to the field correlation function), a three-peaked spectrum will result, from the three exponentials in that equation.
Our analysis so far has been quite formal — using the regression theorem to derive correlationsin the output field
—s0 one may wonder if a physical interpretation exists for the three-peaked spectrum. After al, our model for the
atom contains only two levels, and at first glance doesn’'t appear to accommodate three distinct transitions.

In fact, such an interpretation does exist, and is known as the dressed-states model for the atom [8]. This replaces
our three-part semiclassical Hamiltonian given by Egs. (4.16), (4.19), (4.20) and (4.21) with the following:

1
H= Eha)AaZ + hwyata + h(kao, + k*ato_) (4.42)

Thisisafully quantised Hamiltonian, known as the Jaynes-Cummings Hamiltonian. See that the driving laser is
no longer being treated as classical —its energy appears explicitly asthe term hw,a’ a. Thethird termin Eq.
(4.42) represents the atom-laser interaction. For simplicity, we have taken the atom to only interact with the laser
mode, rather than allowing it to interact with al the modes of the electromagnetic field, which we had done
previoudy. Thisis quite reasonableif the laser isvery intense.

The dressed states referred to are the eigenstates of this Hamiltonian when thereis no interaction (i.e. when

Kk = 0), and are product states involving the atomic states |1) and |2) and photon number states for the laser field.
Thereis some degeneracy among these levels; see the diagram below. When k # 0, we find that the degeneracy is
lifted, and the resulting states split in such away that only 3 distinct transitions (in terms of energy size) are
possible — these are exactly the transitions responsible for the 3-peaked spectrum mentioned earlier.

It is possible to show [8], that each energy level is split symmetrically by atotal amount AQ, where Q is the Rabi
frequency as before, provided that the laser field is strong (in particular, it has a very large mean photon number).
It is possible to find the energy splitting exactly, without having to assume a large mean photon number, however.

(n+%) hwy +§hﬂ

1
L <
(n+%)ha)A—§hQ
o ) (n—%)th +%hﬂ
R LR <
(n—%)th—%hQ
- ; (n—%)th +%hﬂ
mony T E=(ghes <

(n—%) hwy —%hﬂ

Figure 5. Left: The Jaynes-Cummings ‘ladder’ of states are the eigenstates of Eq. (4.42) when k = 0. Note the degeneracy.
Right:  The degeneracy is lifted once we consider interactions. The new ladder of states appears to have many possible
transitions, but in fact only 3 are unique.
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Chapter 5

The optical protocol of Furusawa et al.

5.1 Description

The Furusawa protocol [2] begins with two generating cavities that produce squeezed light. These are optical
parametric oscillators, which we met when presenting the vacuum correlation functionsin Section 4.1. One of the
cavities generates vacuum states that are squeezed in the x-direction, whose field we write Egpg, (again aswedid
in Section 4.1), whilst the other generates vacuum states squeezed in the y-direction (Egpg, ). Be aware of the
convention mentioned in Section 4.1, whereby & refers only to the positive-frequency part of the electric field.

Thesetwo fields are mixed at a 50/50 beamsplitter, seen in Section 3.3. The symmetric superposition

1
&4 = NG (Eeprx + EErry) (5.01)

isdistributed to Alice, whilst the antisymmetric superposition

1
Ep = —(Egppy — € 5.02
B \/E ( EPR EPRy) ( )
isdistributed to Bob. Thetwo fields £, and £ are correlated.
Alice mixes her received field £, withtheinput field £;,, which isto be teleported, at a different 50/50
beamsplitter, and then makes measurements of the X and Y quadratures of the two outputs of this beamsplitter.

She measures the X quadrature of one of the outputs, and the Y-quadrature of the other, employing balanced
homodyne detection (Section 3.4) to do so. Ultimately, she is measuring the quantities

1 1
E(e{,ﬂ + &), ﬁ(el{l - &) (5.03)
where the superscript indicates the appropriate quadrature of its associated field.

Bab receivesthefield €5 aswell astheresults of Alice's measurements. To perform teleportation, Bob needsto
modify hisfield dependent on Alice’ s measurement results. In fact, he wishesto add to hisfield

Ep=EF +i&} (5.04)
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aparticular type of displacement, consisting of the following:

e Addition of £f + EF to his X-quadrature EX
e Addition of !, — &} to hisY-quadrature £};

We will show shortly that such a displacement results in perfect tel eportation in appropriate limits. In total, Bob
addsto hisfield €5 the following quantity

i

* i X X (Y _¢Y
FA \/E(\/E(Em+8A)+\/§(8m gA)) (5-05)

The function F, isthe impulse response describing any filtering that is done by Alice in the process of making her
measurements. For the case where Alice’' s measurements don't filter the fields in any way, the convolution above
isn’t needed. In any practical setup however, we note that Alice’'s measurements will always include some kind of
cut-off (i.e. at least some indirect filtering) due to the apparatus she is using; hence, the convolution is shown for
completeness.

After Bob has implemented his displacement as described above, hisfield is

gout = FB * (’SB +FA * (gin + gj))
=Ep+EN + &
(5.06)

Just as was the case with Alice, we have included the possibility of filtering by Bob: Fy is the impulse response of
any filter that Bob may be using, which he applies after displacing hisfield asin Eq. (5.05).

We have abbreviated the convolutions (i.e., the filtering) by using a superscript a for filtering by Alice, and a
superscript b for that by Bob. Note that, due to the commutativity of the convolution, it does not matter what
order these are applied in:

E® =F xFp+«E=(Fy*Fg)+«E = (Fg+Fy) «& =&, etc (5.07)

In the limit of no filtering by Alice and Bob (equivalently, allowing the bandwidth of any such filtering to become
large), wefind
gout = 8in + (EB + EZ)

1 1 ) )
=&n + NG (Egprx — Egpry) + NG (Ekprye + Ekpry)

= Eip +V2EfpRy — iﬁggPRy
(5.08)

Hence, for large squeezing of Egpg, inits X-quadrature and of Egpp,, initsY-quadrature, we have the result that

E.ur — Em, i.€. theteleportation becomes perfect. Thisisthe reason for the particular choice Eq. (5.05) for
Bob' s displacement.

This protocol was successfully implemented by Furusawa et al. [2]. Formally, the quality of the teleportation can
be quantified by a number known as the fidelity, which rangesfrom 0 to 1. A fidelity of 1 indicates perfect
teleportation. It is explained in [2] that for teleportation of coherent states, the fidelity F cannot exceed 0.5 in this
protocol without the use of entanglement. Furusawa et al. report an experimental fidelity of F = 0.58 + 0.02,
whichis highly indicative of the quantum nature of the teleportation.
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5.2 First Order Correlation Functions for the output field

We areinterested in correlations in the output field €,,,; . The first order correlation function was defined already
in Section 3.5, Eq. (3.69).
We look now at the numerator of Eq. (3.69), and use the equation for the output field Eg. (5.06) to get:

(€ Do) = ((EF @) + L (D) + €8 (1) (B + €2 + 1))
= (&l @) + (el @ + €82 (@) (e + €]°))
= (el ey + (P MER) + (€}’ EL?Y + (€82 (DER) + (5P (DESY)
= (E]9 (1)€Z (0))ss + 4 vacuum terms
(5.09)

The second inequality above follows from the assumption that thereis no correlation between the input field &;,,
and the squeezed fields Egpp, and Egpp,, -

So, in the most general case which considers filtering by both Alice and Bob, the first-order correlation function
for the output field consists of that for the input field (with filtering), plus 4 extraterms involving the squeezed
vacuum fields.

5.2.1 Gaussian Filtering in the absence of filtering by Alice

We move on now to consider the following situation:
¢ No filtering by Alice
e Gaussian filtering by Bob

The numerator of our first order correlation function simplifiesin the absence of filtering by Alice:

(€Lt D Eour (0)gs = (€] (DEL, (0))5s
HER (EL(0))gs + (EF (DEL" (0))ss + (EL (DEL(0))ss + (EL@EL (0))ss
= (E]P (7)€L, (0))ss + 4 vacuum terms
(5.10)

To begin with, we shall concern ourselves only with the 4 vacuum terms in Eq. (5.10).

We let the Gauss an filter impulse response (in time) be
g(t) = ce™ (5.11)

where C and d arerelated constants. We note that d > 0 aswell.
Let dso £(t) be an arbitrary signal intimethat is‘switched on’ a sometimet = ty, andiszerofort < t,.
Gaussian filtering of such asignal then involves the convolution integral

(Ce™ ) xe(®) =C f "o g(enar (512)

to

A noteisin order at this point. Unlike a Lorentzian filter, whose impul se response is causal, the Gaussian filter
impulse response is acausal. This means that the Gaussian filtering process described is dightly artificial.
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We now consider evaluation of the last of the vacuum termsin Eq. (5.10). Firstly,

® N2 ® in2
E@+vEl @ = f Ce~d(T+t=t) ¢, (thdt' f Ce~d(t=t) gl (¢yat”
t

to

= fijexp[—d(r +e—t) —d(t- t”)z] E4(ENE (L dede”
And hence:
<8A (t+ t)g‘,jl‘b @)= f f eXp d(T +t— t')z _ d(t — t")z] (5A(t')5:1r (t"))dt'dt" (5.13)

Now, we wish only to work with fieldsin their steady-states. The LHS correlation function in Eqg. (5.13) can be
made into a steady-state one by allowing the field ‘ switch-on’ time t, to go to minusinfinity —i.e., allowing the
fields to have been * switched on’ for along time period. We also take the fields appearing in the integrand of Eq.
(5.13) to bein their steady-state as well. Overall, what we get from Eqg. (5.13) is the following:

(ELE (0)),s = Jim f f exp[—d(r+t—t’)2—d(t—t”)z]<5A(t')ej(t~)>ssdt'dt” (5.14)

In taking the limit, we expect the parameter t to become superfluous. We are able to find the expectation value
(E4(tNEL (), interms of the correlation functions given in Section 4.1. One first notes that:

(EatIEAE)ss = (Eallt’ =t DEFO))ss (5.15)

which is aconsequence of the correlation functions being both even in time, and dependent only on time
differences. We may then use Eq. (4.07) for the RHS of Eq. (5.15) above.

Looking at the correlation functions presented in Section 4.1, we see that the RHS of Eg. (5.15) involves linear
combinations of exponentialslike exp(—n|t|) , wheren is acongtant. We thus consider theintegral

1(C,d,t,n) = lim czf fexp[—d(r+t—t’)2—d(t—t")z]exp(—n|t’—t"|)dt'dt” (5.16)
tg Yt

to——©
and then we can use linearity to work out the correlation function Eq. (5.14).

The procedure just shown can be repeated for al 4 vacuum terms appearing in Eq. (5.10). We note that some of
the vacuum terms will require the use of delta functions §(t) (see Eq. (4.07)), for which we will need an integral
similar to Eq. (5.16), namely

Is(C,d,t,n) = lim C? f f exp [—d(r +t—t) —d(t- t”)z] §(t' —t")dt'dt” (5.17)

ty——x
The absolute value is not required since the delta function is even.

Details regarding the evaluation of 1(C, d, t,n) are given in Appendix B. Theresult is
2

1C,d,m) = C? o exp( o+t [erf(_n_d )+1]+czlexp L —nr [1—erf(n_dr)]
o 247" \2d V2d 24%P\24 NeT
(5.18)
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For consistency, we have evaluated I5(C, d, T,n) in two ways. Thefirst isto use aparticular definition of the delta
function in terms of an appropriate limit of functions (see[7]), namely:

lim gexp(—nltl) = 5(t) (5.19)
n—w
We hence have the result
I5(C,d,7) = lim 21(6, d,7,1) (5.20)
7’)—)00

Thislimit can be evaluated using L' Hopital’s Rule. Alternatively, we can simply evaluate the integral defining
I5(C,d, 7) directly — Eq. (5.17). Both methods give

2
2 VA —at
Is(C,d,t)=C /_Zd exp< 3

Now we note that theintegral 1(C, d, t,n) effectively ‘filters' the function exp(—nt), that function being a
generic feature in the correlation functions defined in Section 4.1. From the Gaussian impul se response also given
above, Eq. (5.11),we see that d controls the bandwidth of the Gaussian filtering. Asd — o, i.e. asthefiltering
bandwidth becomes very large, we expect the filter to have no effect —we should recover our input function. By
making the choice

) (5.21)

c= |= (5.22)
T
we get the expected result
dli_r)nOOI(C, d,1,n) = exp(—nt) (5.23)
It isalso possible to define the delta function as alimit of Gaussians as follows [17]:
6(x) = lim ! exp <— ﬁ) (5.24)
e—0 24/t 4e
From this, we also get the result
dli_rﬁo I5(C,d, 1) =6(7) (5.25)

with the choicefor C asgivenin Eq. (5.22). Such aresult is expected for precisely the same reasons given above
—that is, I5 effectively filters adelta function, which we expect to get back in the regime of very large filtering
bandwidths.

In what follows, we shall stick with the notation that has C as an argument in the integrals I and I5, mainly to
distinguish these integrals from the corresponding ones for Lorentzian filtering to be introduced in the next
section. However, C isnot realy an extravariable sinceitisrelated to d, and in all that follows we will not be

considering any values for C other than C = /d/m.
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5.2.2 Lorentzian Filtering in the absence of filtering by Alice
Relevant integrals for the following situation:

e No filtering by Alice

e Lorentzian filtering by Bob

are derived by Noh in [7]. For completeness, we state the results here. The impulse response in time of Bob's
Lorentzian filter is given by

1(t) = ypu(t)exp(—vypt) (5.26)
where yp is hisfilter bandwidth. Here u(t) isthe unit step:
0, t<o0
u(®) = {1 t>0 (5.27)

The presence of this unit step means that the Lorentzian filter is causal, as we explained earlier.
TheintegralsI(C,d, t,n) and Is(C, d, 7) of Egs. (5.16) and (5.17) above were evaluated for Gaussian filtering.
Going through the same process for Lorentzian filtering gives

2

14:U VB

I(yg, T, 1) = 55— eXp(=yT) + 77— exp(—n7) (5.28)
n VB Y —1

4
Is (Y5, 7) = = exp(~7;7) (5.29)

In all above (and in the following) equations, the replacements I(C,d, t,n) — I(yg,t,n) and Is(C,d, ) —
I5(yg, T) take usfrom Gaussian filtering over to Lorentzian filtering by Bob. We'll take yp to represent
Lorentzian filter bandwidths, and d to indicate Gaussian filter bandwidths, in order to make it clear which type of
filtering is being used.

These equations will be used in plots below to test the effectiveness of Gaussian filtering against Lorentzian
filtering.

5.2.3 Spectrum of the teleported vacuum

We now consider the tel eporter output when there is no input state. We then have only the four vacuum termsin
our first-order correlation function Eq. (5.10):

(€l @Eout (ssvacy = (€5 EL0))ss +(EF @EL (0))ss + (€2 (DEL(0))ss + (€L (DEL" (0))ss
(5.30)

If we use our integrals, namely Egs. (5.16) and (5.17) defined in the previous section, we can evaluate Eq. (5.30).
The corrdation functions of Section 4.1 are needed, as shown in the previous section. Theresult is:

_Ays
1+A1

This gives us the unnormalised first order correlation function for no input field.
We shall define the optical spectrum as:

(it Dot Ossacy = Toe1 (€. A2 A +2,7) +1;(C,d,D) (5.31)

S(w) = % f ) dt(€!l . (1)E e Y eXp(iwT) (5.32)
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whichisaFourier transform of the unnormalised correlation function. Thisisreally the normalised power spectral
density, mentioned in Section 3.5.

Now, we see that the correlation functions for the vacuum terms are linear in the integrals I(C, d, t,n) and

I5(C,d, ). Hence, in order to look at the spectrum, it is only necessary to take the Fourier transform of these
integrals.

All the correlation functions we shall ever meet in this report areeven in t. Essentially, thisis a consequence of us
insisting on the use of normal ordering in al correlation functions, and the fact that the correlation functions we
will be working with are al real. Now for afunction f (t)that isreal and even in time, we have the result

% J_idrf(r) exp(iwt) = % 2Re (fowf(r) exp(iwr)) (5.33

where the Re indicates the real part. Now define
SI(C,d,w,n) = %fowdrl(& d,1,n) exp(iwt) (5.34)
SIs(C,d,w) = % fowdrla (C,d, t) exp(iwT) (5.35)

Then, if we want to look at the correlation function spectrum, it is only necessary to replace the integrals I and I5
wherever they occur with the functions ST and S1, and take twice the real part of the resulting overall expression.
This aso holds true later on, when we consider teleporting the resonance fluorescence field. These functions are
given by:

SIC dywom) = 2 o)1+ f(iw)+ - ) "(75)
GO =3g\ w02 P\ " 2d T\ ) Tt 2T\ 2a “\V2a

(5.36)

And
C? w? lw
S[g(C, d,w) =Eexp<—ﬁ> 1+ ef (ﬁ) (537)

We now look at some vacuum spectra below. For comparison, plots are shown with Lorentzian filtering as well.
The comparison here is done by matching the filter half-widths. Recall that d was used as the parameter
controlling the Gaussian filtering bandwidth, while yz was used for Lorentzian filtering. To relate the two, note

that under our version of the Fourier transform that we are using for spectra, namely S(w) = % f_ww f(Hetdt,
we have the following:

)
1+—i
VB

2 (1 + (%)2)

ypu(t)exp(—ygt) < (5.38)

and®

3 See, for example, entry (23) p121 of [20].
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d 1 w?
Z —dt? _ - 5.39
—exp(—dt?) o 2ﬂexp( 4d> (5.39)
The Fourier convolution theorem reads, under our particular definition for the Fourier Transform:

f*g < 2nFG (5.40)

where < denotes a Fourier Transform pair. In frequency space then, these filters halve in amplitude at w = +yp
and w = +./4dlog(2) respectively. Matching half-widths then gives

vE
=— 541
4log(2) (541)
In the figures below, we have worked in terms of yp, and calculated the appropriate d from Eq. (5.41).
The degree of squeezing has been set at 4 = 0.9 for these plots. The right-hand figureis zoomed in around the
w = 0 part of the spectrum.

Lorentzian (blue) and Gaussian (black) Vaccum Spectra, with «/B/yS =5 Lorentzian (blue) and Gaussian (black) Vaccum Spectra, with yB/yS =5
0.12 T T T T T T T T T 0.09
0.08
0.1f 4
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Figure 6: Teleported vacuum spectra with yz /y, = 5
Lorentzian (blue) and Gaussian (black) Vaccum Spectra, with ygly, = 3 Lorentzian (blue) and Gaussian (black) Vaccum Spectra, with ygly, = 3
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Figure 7: Teleported vacuum spectra with yz /y, = 3
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Figure 9: Teleported vacuum spectra wtih yz/y, = 0.3

The genera teleported vacuum spectrum consists of a‘vacuum dip’ region centered around w = 0, where the
vacuum noise is reduced almost to zero, flanked either side by two broad peaks (‘ sidepeaks’).

We can see that for filtering bandwidths by Bob that are larger than the squeezing bandwidth, i.e. yz > v, the
central region around w = 0 is much the same between Gaussian and Lorentzian filters. Thisisto be expected —
Bob’s bandwidth is not yet harrow enough to start cutting significantly into the vacuum dip region. However, we
see that the Gaussian filter is better at cutting out the higher frequency noise, which is expected due to the fact that
it decays much quicker than does the Lorentzian in frequency space, a higher frequencies. Asyp is decreased
relative to the sgueezing bandwidth, the Gaussian filter begins to reduce the vacuum sidepeak noise much sooner
than does the Lorentzian filter (each filter having the same half-width). For y5 < y,, we see considerable noise
reduction by the Gaussian filter. It does not reduce the noiseright in the centre at w = 0, however — the two filters
still match in performance there. The vacuum dip region also narrows as the filter bandwidth is decreased.
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5.2.4 Spectrum of the teleported resonance fluorescence field

Further testing of the Gaussian filter shall now be done by looking at teleporting a resonance fluorescence
spectrum. The output field correlation function now has an additional term since we are not just inputting a
vacuum:

(€l @Eput (055 = (EX (DEL (0))gs + (E] e @ Eput (0)ssvacy (5.42)

Evaluating (6 (r)e (0))ss , and then its spectrum, is done in exactly the same way as for (8 (r)eg (0))ss and
othersin Sectlons 5.2.1and 5.2.3. Thereis adight difference, however. We want to make use of the correlation
functions of Section 4.2, but as we saw before, those correlation functions are given in terms of atomic raising and
lowering operators. What we need then is a relationship between £;,, and the atomic raising and lowering
operators. Thisrelationship isasfollows:

gin =4Vin0- + Ein (543)

where €;,, isavacuum field operator. Thisis an example of an ‘input-output’ relationship - see for example,
Section 7.1 of Wals[14]. Such arelationship expresses a cavity output field in terms of input fields and atomic
operators. Our notation is perhaps alittle unclear, for we have used ‘in’ on the LHS of Eq. (5.43) becausethisis
thefield that isinput into the teleporter, but it isrealy the ‘output’ field in the sense used in the input-output
relationship just mentioned. Ultimately, assuming that we normally order our operators, the first-order field
correlation functions are obtained from the atomic operator correlation functions simply by multiplying by y;,, ,
the input bandwidth of the field, and changing y to y;,,. From Eq. (4.40),

(8 (T)gm (O))ss MM(O—+ (T)G (0)>ss
_Yin Y? Vin
- exp (- 20)

4 Y241 5 2

_Yi Y 2 _ 2 Vin (_ (3)/in _ ) )
8—(Y2+1)2(1 Y2+ (1 5Y)46) exp o)
Vin Y2 2 2 Vin ( (3)/in ) )
3 (Y2+1)2( -y -Q 5Y)46) exp 2 +9d]t

(5.44)

Thefirst equality is the application of Eq. (5.43), along with the fact that we are normally ordering, so that the
second term on the RHS of Eq. (5.43), €;,, can be ignored.

Note that we have skipped over asmall fact here. Eq. (4.40) wasreally only defined for T > 0, due to the way the
guantum regression theorem was applied. It follows that Eq. (5.44) isvalid only for T < 0, whereit is understood
that |z| isto be used on the RHS of that equation. But, taking the complex conjugate of Eq. (4.40) and using the
fact that it isreal shows usthat Eq. (4.40) isequally valid for T < 0, with the replacement t — |z|. So we find
that Eq. (5.44) isinfact valid for dl .

What we then want is the filtered version of this: (€]? (1)€5, (0)),,. However, Eq. (5.16) shows us how to filter a
generic exponential exp(—n|t|), and Eq. (5.44) is merely alinear combination of three such exponentias, so this
is easily done.

We may, in asimilar manner, use Eqs (4.41) and (5.43) to abtain the normally-ordered quadrature correlation
functions. We first compute (8 (r)e (0))s —thiswill beidentical to Eq. (5.44), but for asign change on the
second and third terms. Then, expressing thefleld X and Y quadratures (€ and £)) interms of the fields

themselves, we have (: £X (D)€ (0): )55 = 3 {(E], (D) Ein (0))ss + (€], (DEL, (0))5} and (: €1, (D)EL, (0): )55 =
_{(8 (T)gln(o))ss (S (T)g (0)>ss}
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In al that follows, we set the resonance fluorescence spectrum parameters as:

e Y = 8 (recall thisis proportional to the Rabi frequency, asin Eqg. (4.30), and so sets the |aser intensity)
o 1= 0.9 (degree of squeezing)
Yin/¥s = 0.01 (ratio of input to squeezing bandwidths)

Note that y;,, isnot the sole parameter that controls the total width of the resonance fluorescence spectrum.
According to our dressed states model (Section 4.2), the distance between the two side peaks is 2Q (almost; but
due to the influence of the middle peak thisis not exact), and © depends on both y;,, and Y. However, y;,, does
control the linewidth of each of the three peaks.

With these parameters, the object of our teleportation thus appears as follows.
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Figure 10. The resonance fluroscence spectrum with parameters given above.

For actual computation purposes, we have just set y, = 1. This gives afrequency scale that isin units of w/y;, as
indicated (if one wasto consider arbitrary values of ;).

We expect that this spectrum will *sit” inside the vacuum spectrum dip seen before in our vacuum plots. The fact
that this dip is not perfectly free of vacuum noise (which isaresult of imperfect squeezing) means that our input
field will of course be modified alittle upon tel eporting.

The quadrature correlation functions have the following spectra:
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Figure 11. The spectrum of (: £X (£)€F (0): ). Figure 12. The spectrum of {: ¥ (2)&€F (0): )ss.
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We see that one quadrature contains the central peak (the X quadrature), while the Y quadrature contains the two
sidepeaks as mentioned in Section 4.2.

We now plot the tel eported spectrum for afew values of Bob' s filtering bandwidth, to get afeel for the
parameters involved. Aswas the case with the vacuum spectra, we have matched half-widths for the Lorentzian
and Gaussian filters.

The left-hand plot in each case shows the teleported spectrum under Lorentzian filtering (blue) and Gaussian

filtering (black). The right-hand plot is aresidual one, and subtracts away from the teleported spectra the spectrum
of the input resonance fluorescence field. Obviously, if the teleportation is perfect, this residual plot should just be
aflat line at O (indicated by the dashed line where appropriate). We should like it to be as close to this as possible.

Gaussian (black) and Lorentzian (blue) R.F. Spectra, with «/B/yS =1 Gaussian (black) and Lorentzian (blue) residue spectra, with «/B/yS =1
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Figure 13: Teleported resonance fluorescence spectra with yg /v, = 1.
Gaussian (black) and Lorentzian (blue) R.F. Spectra, with VB/ys =05 Gaussian (black) and Lorentzian (blue) residue spectra, with VB/Vs =0.5
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Figure 14: Teleported resonance fluorescence spectra with yz /y, = 0.5.
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Gaussian (black) and Lorentzian (blue) R.F. Spectra, with yg/yg = 0.1 «10° Gaussian (black) and Lorentzian (blue) residue spectra, with yg/y, = 0.1
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Figure 15: Teleported resonance fluorescence spectra with yz /y, = 0.1.

0.3

Inthefirst plot, whereyp /¥, = 1, our filtersare not yet cutting into the resonance fluorescence spectrum — see
that subtracting away the original spectrum leaves behind just afiltered vacuum (see Fig. 8). Whenyg /y, = 0.5
thisisno longer the case: there are two small dips in the residue plot, either side of w = 0, corresponding to our
filters beginning to cut into the actual sidepeaks of the input spectrum. By thetimeyg /v, = 0.1, this sidepeak
lossis severe, and much more so for the Gaussian filter. On the other hand, one can see that the Gaussian filter
has, for thisvalue of y5 /y., cut the noise in the spectrum wings almost to zero.

It isclear that there is atrade-off here: we need to balance the elimination of vacuum noise against the loss of
input signal, especially in the sidepeaks.

Loss of signal in the spectrum sidepeaks
We investigate specificaly this sidepeak signal 10oss now. For the non-tel eported spectrum having
Yin/¥s = 0.01 and Y = 8, we numericaly find the sidepeaks to be located at

hd = +0.05565275
Vs

See Fig. 10. Note that thisis offset just slightly from the Rabi frequency here, which is% = 0.0565685 (in
units of 1/y,), which due to overlap of the three Lorentzian peaks, as stated earlier.

The following plot shows the difference between the tel eported spectrum and the input spectrum for resonance
fluorescence, evaluated at the location of the right-hand sidepeak in the input spectrum. The sign of this difference
is such that a positive value means that the teleported sidepeak is larger than the input sidepeak. It is seen that for
agiven filter half-width, Gaussian filtering resultsin alarger sidepeak loss. Conversely, this does mean that if we
are prepared to accept a certain amount of sidepeak loss, a Gaussian filter of larger half-width can be used
compared to Lorentzian filtering.
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The blue curve corresponds to Lorentzian filtering, while the black curveis for Gaussian filtering.

Sidepeak loss: Gaussian(black) and Lorentzian (blue)
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Figure 16. Sidepeak loss in the right-hand sidepeak of the teleported resonance fluorescence field.

This plot of sidepeak loss is deceptive. Technicaly, thetip of the sidepeak appears to be perfectly teleported at

approxmately = 0.41 for Lorentzian filtering, and Y5 — .48 for Gaussian filtering (i.e., where these curves

crossthe dashed linein Fig. 16 above). However, upon removal of the vacuum noise, we redlise that this
‘perfectly’ teleported sidepeak isin fact the result of the teleportation protocol letting in vacuum noise at the
sidepeak location. For afairer comparison, we remove the vacuum noise that is being let in, and zero in on the
part of the spectrum that actually came from the input spectrum only. The result of this comparison isshownin
the figures below. We natice that these plots are aways less than zero, since some input signal is always lost. The

right-hand figure is a zoomed-in version of the left-hand one.

2 Sidepeak loss: Gaussian(black) and Lorentzian (blue)
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Figure 17. Sidepeak loss comparison, after removing the vacuum noise, in the resonance fluorescence spectrum.

Our conclusions are unchanged however —for a given filtering half-width, Gaussian filtering results in greater
sidepeak loss than does Lorentzian filtering.
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Vacuum noiselet in during teleportation

In our plots showing the total output resonance fluorescence spectrum, Figs. 13 — 15, we see that a certain amount
of vacuum noiseis always present in the spectrum wings. These give rise to very broad vacuum noise peaks that
flank the triple-peaked resonance fluorescence spectrum in the centre.

Below, the plot shows the largest value of this vacuum noise, as a function of the filtering half-width. See that the
Gaussian filter has, in al cases, alower maximum amount of vacuum noise than does Lorentzian filtering. We
compute this largest value of vacuum noise by calcul ating a tel eported spectrum, subtracting away the original
spectrum, and finding the largest val ue of the noise that remains. This corresponds to the height of the flanking
broad peaks, less any signal present at that location.

Asusud, the blue curve pertains to Lorentzian filtering; the black curveisfor Gaussian filtering.
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Figure 18. The largest value of the vacuum noise let in by each filter type during resonance fluorescence teleportation.

As explained before, there is always a trade-off in tel eportation. We wish to set our filtering so that it cuts out as
much vacuum noise as possible, without eating away at the edges of the input spectrum (in the case of resonance
fluorescence, the sidepeaks). We expect the relationship between these two quantities to be an inverse one —if we
are cutting out alot of the vacuum noise, then our filtering must be strict and the sidepeak |oss must be large.
Conversely, if we are prepared to let in a bit more vacuum noise, then we can have less sidepeak loss. Below, the
plot shows the sidepeak loss as afunction of the maximum vacuum noise let in, for each filter type. The ‘sidepeak
loss' isthe actual lossin input signal, and excludes any vacuum noise.
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Figure 19: The trade-off plot. (Actual) Sidepeak loss versus maximum amount of vacuum noise let in.
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We can see the superiority of Gaussian filtering here. Given a particular value for the maximum vacuum noise let
in, we see that a Gaussian filter can do the job with less sidepeak loss than a Lorentzian filter (we are not saying
anything about the half-widths involved, however —these won’t necessarily be the same for each filter).
Conversdly, if we set the amount of sidepeak |oss that we are prepared to accept, then use of a Gaussian filter
gives asmaller value for the maximum vacuum noise let in.

Teleported Y-quadrature correlation functions

The teleported sidepeaks are made up of 3 parts: some overlap from the central peak, some vacuum noise, and of
course the origina spectrum (but now filtered) —the ‘signal’ part of the teleported sidepeak. We remove the
influence of the central peak by comparing the Y quadrature correlation function for the teleported field with the
Y quadrature correlation function for the input field (Fig. 12).

The location of the sidepeaksin the Y quadrature spectrum are:

@ +0.0556776436283

Vs
See that this differs very dlightly from the value found previoudy for the total spectrum sidepeaks, since we no
longer have the overlap effect of the central spectrum peak.

When we calculate the Y quadrature correlation function for the teleported field, we find that it contains half the
vacuum noise present in the total output field correlation function. The other half is present in the X quadrature.

The plot below shows the ratio of the teleported sidepeak height (minus vacuum noise first) to the input sidepeak
height. Asusual, Gaussian is black and Lorentzian is blue. The fact that the Gaussian curve lies below that of the
Lorentzian indicates that, for afixed quality of teleportation (for example, if we want the signal part of the
teleported sidepeaksto be at least 96% of the input signal), a Gaussian filter of larger half-width does the same
job asaLorentzian filter of smaller half-width.
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Figure 20. The signal part of the teleported sidepeak divided by the actual (input) height of the sidepeak.
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We repeat the above plot, but now consider the total teleported sidepeak height (including vacuum noise) as a
fraction of the input sidepeak height.

Fraction that the total teleported sidepeak is (incl. noise) of the input sidepeak

1.02
1 = S
7—//#,_
0.98
0.96 /
0.94 /
.5 0.92 /
3
i 09 //
0.88 //
0.86 //
0.84 //
0.82 //
0.8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ygs

Figure 21. The total teleported sidepeak height divided by the actual (input) height of the sidepeak.

As expected, our inclusion of vacuum noise eventually gives us higher teleported sidepeaks than were originally
input.

5.2.5 Analytical work with the first-order correlation function

We expect that in certain limits, the Furusawa teleportation protocol outlined should yield perfect tel eportation of
thefirst order correlation function, among other things. In this section, we work analytically with the first-order
correlation functions to highlight this more explicitly.

Our expression for the vacuum part of the correlation function is Eq. (5.31), under Gaussian filtering:

2 Y
(ELue @ Eput (0))ssacy = ﬁl (C, d,?s(l + /1),T) +15(C,d,7) (5.45)

where we will betaking C = \/% asusua. Written out in full using Egs. (5.18) and (5.21), thisis:
—y. Ys(L+A) v 1+ 21 Y. 1+A
(6 ut (T)Eout (0))SS(VAC) 2(1 +S/1) eXp( . 2 (i( 4 ) + T) 1—erf \/S—
s Vs(1+/1)(ﬁ<1+/1)_1_) | 1+/‘l d
Taa+ P\ Tz @\ 2 2

N dex —dt?
2T P 2

(5.46)
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No approximations have been made so far.

We would like to make the approximation y, > d —that is, Bob’s Gaussian filter bandwidth d should be ‘well
within' the squeezed bandwidth of light used in teleportation. Provided that the input bandwidth y;,, is aso well
withind, i.e. d > y,;,, we expect that this, along with the requirement A — 1 (i.e. perfect squeezing), should
yield perfect tel eportation. These conditions on the bandwidths involved in teleportation are reported on by Noh

in[7].

A quick way of doing thisis simply to take y, — oo, i.€. to consider that the squeezing bandwidth is quite large.
Sincethetwo integralsI(C,d,n,t) and I5(C, d, T) arerelated by

lim gI(C, dn,7) =I5(C,d,7) (5.47)
r]—)oo
we have that:
_Ays Vs —42
Jim =2 1(6d 50+ 0,1) =557 06(C 4D (5.48)
Hence:
N i
Jim (€L (e Osswvacy =(1 = 3 792) 1€ 47 (5.49)

This expression istruein the case where I and I5 have been evaluated for Lorentzian filters, because Eq. (5.47)
holds for Lorentzian filtering as well. In fact, this approximation doesn’t depend on the explicit form of our
filtering.

It gives us an approximate expression for (Ejut (D) Eout (0))ssvacy inthelargey, regime; for Gaussian filtering,
thisis:

d 42 —dt?
(ggut (T)gout (O)>ss(VAC) =~ % (1 — m) exp <TT> (550)

If we now allow 4 — 1, this expression vanishes. By considering that d > y;,,, we see that Bob' s filtering won't

‘clip’ any of theinput signal, so that we may consider the input field £;,, as approximately unfiltered the teleporter

output. We then have approximately:

gl(i) (Txg;l (O)gin (O))ss + (gz-)rut (T)gout (0))55(VAC)
(€1 ()€ (0))5 + (Efe (000w (Mssvac

where we have removed superscripted b’ s on the £;,,” sin accordance with the approximation d > y;,, .
Hence, under the approximations:

9 (1) =

(5.51)

[ ] )/S — 0,
e 1—1,and
L] d> Yin
theterms (... )y4c vanish, and we see that g(l) () — gi(;)(r); i.e. thefirst order correlation functions of the input

out

field are recovered at the teleporter output.
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Now as mentioned, this result doesn’'t depend explicitly on the type of filtering used. To obtain ateleportation
limit that is more relevant to Gaussian filtering, we instead take the limit y, > d by considering the limit % —

0, Of equivalently;i — 0.

Then, taking t to have some finite value, we see that allowing % — oo in the expression Eqg. (5.46) means that the
error function arguments become very large. Now for x > 1, we have the approximation

1
erf(x) 1 — —exp(—x? 5.52
(x) - p(—x*) (5.52)
One can see the quality of this approximation in the first-order correlation function by viewing the plotsin

Appendix A.
If we make the approximation Eq. (5.52) for both the error functions appearing in Eq. (5.46), we get the relation:

(Egut (T)gout (0)>SS(VAC) ~ \/ZE /1 - i 2 \exp <_C;T2> (553)
”\ (1+ )2 —4()/1) TZ/

for Gaussian filtering in the};—s — oo limit. Thisis congstent with Eq. (5.50) —itissimilar in form, but has an
extraterm in the denominator. Hence we see that under the approximations:

Ys/d — o, 0rd/y; — 0,
e A1—1,and
o d>» Yin

we again have g (1) — gi(,f)(f)-

out

A small note: one can see that Eq. (5.53) isundefined when t = ;’—; (1 + 2). Thisisnot a problem however, for

the approximation we took was only meant to be valid when % »>r,andt = Zy—; (1 + 2) fdlsoutside this range of
validity.

The equivalent expression to Eqg. (5.53) for Lorentzian filtering isgivenin [7]:

42 s
<g(-)l-ut (T)gout )VAC =~ VB (E (1 - m) eXp(—)/BT) - m Z) exp (— ? (1 + A)T)) (554)

5.3 Second-Order Correlation Functions for the output field
The second order correlation function for the output field is

2 _ (ggut (O)SZM (T)gout (T)gout (O))ss
out
.l.

2
<ggut (O)gout (0)>SS
AsInEQq. (5.06), £, = EB + EX + £;% inthe general case of filtering by both Alice and Bob.

(5.55)
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Our task will be to evaluate the numerator — the denominator can be computed by setting t = 0 in Eq. (5.42), and
making use of Eq. (5.31) and the filtered version of Eq. (5.44).

Theinput second-order correlation function looks like, for the parameters of Section 5.2.4:
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Figure 22. The second order correlation function for the resonance fluorescence field.

See Eq. (2.152) of Carmichael [8]. Notice the highly antibunched result g® (0) = 0.

5.3.1 Vacuum terms in the second order correlation function
Let us write the squeezed fieldsin terms of their quadratures:

Eppre = Efpre T IE€F PRy (5.56)
Eppry = Eipry + PRy (5.57)

For such fields, both the X and Y quadratures are random variables with a Gaussian distribution. It followsthat £4
and &g (which are linear combinations of the squeezed fields Egpg, and Egpg, ) are complex Gaussian random
variables aswell. We now state atheorem that will simplify the evaluation of second-order correlation functions
involving £, and Ep.

The Gaussian Moment Theorem

We present here the Gaussian Moment Theorem (also known as the Gaussian moment factorisation) as given in
Section 2.8.1 of [11].

The Gaussian Moment Theorem states that for N Gaussian-distributed random variables X;, X, ... Xy, moments to
any order involving these variables can be reduced to combinations of second-order moments alone, provided the
variables themselves have zero mean.

Thatis, if (X;) = (X3) = -+ = (Xy) = 0, then we have:

- UX1Xo X X3Xy) ... Joym , fOr N even
(X1X; .. Xy) =4 (7) 12M72

0, for N odd

By sym, we mean the symmetrised form of the product.
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The particular result we need from this theorem isthat, for variables X;, i = 1,2,3,4 satisfying the conditions of
the theorem,

(X1X2X3Xy) = (X1 Xo X (X3 X,4) + (X1 Xy N (X2 X3) + (X1 X3 W (X2 Xy) (5.58)

This result does apply to our vacuum fields, which of course have zero mean. If one applies this Theorem to the
numerator of Eq. (5.55), it is possible to write that numerator as[7]:

(EMP N @EL (DEL, (0))5s + 2(ELP () EL (0))55(Ed e @) Eput (0ssvacy

+2(E] (0)EL, (0))s5(Ed e (0)Epue (ONsswacy + (Edue (D Eout (O swac) + (€Lt (0)Epye (O swac)
(5.59)

whereit is assumed that the input field is the resonance fluorescence one.
All thetermsinvolving VAC can already be evaluated with the results obtained earlier in first-order correlation
functions. It remains only to evaluate the first term of Eq. (5.59).

5.3.2 The non-vacuum term in the second order correlation function

Operator equation

We begin by extending the analysis of Section 4.2. Consider an operator X (t) that satisfies the same resonance
fluorescence master equation as the system density operator. Note that, unlike p, the operator X may not have unit
trace. That is,

Z—f = —i% [0, X] + % [e~i@ata, + e'@ato_, X] +g(20_Xa+ —0,0_X—Xo,0_) (5.60)
From this, we derive equations of motion for the matrix elements of X inthe|1), |2) basis:
%Xn = %eiw“xm —§€_iwAtX1z + v X2 (5.61)
%Xzz = ?e_iw*‘txn - ?eiw*‘txu —¥X22 (5.62)
%Xn = lwyXip + %eiw*‘t(xzz —X11) — an (5.63)
%Xu = —lwy X2 —ge_iw/*t(xzz —X11) — ng (5.64)

Thefirst two eguations show thatj—t (X171 + X5) = 0, sothetrace of X ispreserved in time:

X11(t) + X3 (t) = X11(0) + X5, (0) (5.65)

Due to this equation, we needn’t work with the four separate equations Egs. (5.61) — (5.64), reducing them instead
to three. We may write them collectively as:
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14 iQ
4 /U /2 O T2\ 0
a<V>=| 0 Y iQ |<V>—y< 0 ) (5.66)
w \ 2 2 w X11(0) + X32(0)
—iQ iQ -y

where:
U =Xy = Xppe'at
V =Xy = Xppemtoat

W =Xy — X
Let us write this equation as
d
%x =Mx+b (5.67)
We then have the solution
x(t) = —M71b + S~ lexp(At)[Sx(0) + SM~1b] (5.68)

Once more, S isamatrix that diagonalises M, and A = SMS~1. Infact, we do not need to redi agonalise anything,
for the matrices S and M are precisely the same asthose in Eq. (4.36), which we have already diagonalised. We
thus obtain full solutionsto Egs. (5.61) —(5.64). These arelisted in Appendix C.

Structure of the calculation
We want to evaluate the correlation

(€M) (D)€L, (1)L, (0)) s (5.69)

which is not reducible to first-order moments by the Gaussian moment theorem (for the resonance fluorescence
field at least). It is evaluated by a method due to Noh [7]. In[7], the Eq. (5.69) was evaluated taking into account
filtering by both Alice and Bob. In the regime of no filtering by Alice, it is slightly simpler to evaluate, and we
outline the cal culation here.

We begin with the case of Lorentzian filtering by Bob (and no filtering by Alice). Then, we have for

(€M 0)er? ()L (1)L, (0))s, the expression:

t t+71 t+1 t
vivh Jim e [ae, [ an [ at [ doGo, e @e o (@) ers it
to——e to to to to
(5.70)

The parameter t is expected to disappear upon taking the limit indicated. Note that we wish to have hormal
ordering of operatorsin the integrand, in accordance with the rules of Section 3.5, asindicated by the explicit
colons: : .

58



The procedure for evaluating this works as follows:

o Break theregion of integration in Eq. (5.70) upintothe4 x 3 X 2 x 1 = 24 regions of integration
corresponding to all possible different time orderings of ¢y, t,, t3, ty.

e Apply the quantum regression theorem* to calculate (: o, (t;) o, (t;)o_(t3)o_(t,): ) in each of the 24
cases.

¢ Perform the integration indicated above, changing the integration bounds to reflect the particular time
ordering. Call the result W;, where i runsfrom 1 to 24.

e Sumall 24 W; to obtain the overall integral.

We are quite fortunate, though. It turns out that it isn’'t necessary to apply the quantum regression theorem 24
times over. Instead it is applied to 3 master cases, and by allowing our integration to be a little general in each of
these 3 cases, we can find the integral in Eg. (5.70) for all 24 time orderings. We do this now.

Master Casel. t; > t3 >t >ty
One finds, upon applying the quantum regression theorem, that [7]:

4
(0L ()0 ()0 () () = ) PPexp(=yir)em(—yt2)exp(—its) (5.71)
i,j,k=1

The Piﬁ) are constant coefficients that are linear combinations of products of elements of the vectors F*, F~, G ¥,

G~, H, I andJ defined in Appendix C. See equations B.20a-c of [7]; for completeness we have listed them in
Appendix D. The (1) indicates master case 1.
Thevariables t,, T, and T3 correspond to the three positive time differences

Ty =t —ly, Ta=t3—t, T3=0,—13 (5.72)
We now wish to perform the integration implied by Eqg. (5.70), but with the particular time ordering indicated. We
define afunction S; (x,y, z, wla, b, ¢) by:

t+x t+y t+z t+w
ngizn lim e—VB(4f+x+Y+Z+W)J dtlf dtzf dt?’J dt4e—afl—bTZ—CT3+VB(f1+f2+f3+f4)
to——e to to to to

(5.73)

where the subscript ‘ 1’ indicates the integration is to be performed under the time constraints of master case 1 —
i.e, ty; >tz >ty > ty. Toincorporate this time ordering, the integration should be written

Mxyzw Myyz myz y
f dt, f dty f dtz | dt; (5.74)
to ty t1 t3
Changing integration variables from t4, t,, t3, t4 t0 11, T3, T3, t4, We find that the integral part of Eq. (5.73) is.
t+myyaw (t+mxyz )—t4 (t+myz )—(Tl +ty4) (t+y)—(t1+12+t4)
f dt4 f dT1 f de f dT3 (575)
to 0 0 0
whilst the integrand becomes
e Brp—a)T1+(2yp—b)To+(yp—c)r3+(4yp)ts (5.76)

* Thisis a generalisation of the quantum regression theorem presented in Section 4.2.
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Thelimit part in front still needsto be taken. We have followed the notation of [7]: m,,,,,, indicatesthe smallest
of x,y,z and w, and so on. Thereisalso asmall simplification —it will in fact always be the case that 2 of x, y, z
and w are 0, whilst the remaining two are then 7. Hence, we have m,,,,,, = m,,, = 0 above.

Now define

4
1
Wi y,zw) = D PRSIy, 2wl v) 577
ij k=1

The contribution to (€]2 (0)€1? (1)L, (1)L, (0)),, fromtheregion t, > t3 > t; > t, isthen W; (0, 7,7, 0).

Master Case2.t, > t3 >ty >ty
We proceed exactly asin master case 1. In this new time regime, one finds

4

(oL ()0 ()0 () () = ) PRexp(=yir)em(—yT2)exp(—its) (5.78)
i,j,k=1

where the constants Pl.](.i) differ from Pi](.,?. The T variables differ now; they are
71 = t4 - tl' Ty = t3 - t4, 3 = tz - t3 (579)

Define S, (x, v, z, wla, b, ¢) by theintegral givenin Eq. (5.73), but now carried out with t, > t; > t, > t;.

The integration should be written, to include this new time ordering, as:

t+myyaw (t+myzw )—t1 (t+myz)—(11+t1) (t+y)—(t1+12+t1)
f dtl f dT1 f dTZ f d‘[3 (580)
t 0 0 0

0
whilst the integrand becomes

e Bvp—a)T1+(Q2yp—b)T2+(yp—c)T3+(4yp)t1 (5.82)

Thelimit is still taken. Remember that 71, 7, and 73 here are defined by Eq. (5.79), not Eq. (5.72).

With the redisation that m,,,,,, = m,,,, = 0 for all the cases we will be considering (as explained in master case
1), wefind (noting that t; and t, arejust dummy integration variables) that S; and S, are exactly the same
functions. Thus, in spite of the new time ordering being considered here, there is no need to do any new
integration. However, we shall continue to distinguish the two functions notationally, even though they are the
same. Define

4

2
Wr(x,y,z,w) = Z Pi,(-k)Sz ¥, 2wV, ¥ vi) (5.82)
i,j,k=1

The contribution to (€]? (0)&1? (1) €k, (1)L, (0))s, fromtheregion t, > t3 > t, > t; isthen W, (0, 1,1, 0).
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Master Case 3. t, >t >t3>1,
In this new time ordering, we have

4
(04 (60, ()0 (E)0-(E):) = ) Pexp(=yr)exp(—y; 72)exp(-yts) (5:89)
i,j,k=1

where the constants Pl.](.,f) again can differ from PU(.,? and Pl.](.,f). The 7 variables are now:

T = t3 - t4, Ty = tl - t3, T3 = tz - tl (584)

Asbefore, define S3(x, v, z, wla, b, ¢) by theintegral givenin Eq. (5.73), but now carried out with t, > t; > t3 >
t4. Theintegration in Eq. (5.73) should be written, to include this new time ordering, as:

t+M 7 (t+myy, )—ta (t4+myy )=(r1+t4) (t+y)—(t1+12+t4)
J dt4 f dTl J de f dT3 (585)
t 0 0 0

0

whilst the integrand becomes

e Brp—a)T1+(2yp—b)To+(yp—c)r3+(4yp)ts (5.86)

Thelimit isstill taken.

Once more, thisintegral isamost entirely identical to that defining S;. We see that S5 is exactly the same function
as Sy, but with the constant m,,, now replaced by m,,, - compare Eq. (5.85) with Eqg. (5.75). Again, we don’t need
to do any new integration here. Define

4

3
Ws3(x,y,z,w) = Z Pi,(-k)Sg ¥, 2wV, ¥ vi) (5.87)
i,j,k=1

The contribution to (€]? (0)€1? (1) €k, (1)L, (0))s, fromtheregion t, > t; > t5 > t, isthen W5(0, 1,7, 0).

Theremaining time orderings
Note that, for all 3 master cases, we have

(104 (t1) o (t2)0_(t3)0_(t4):) = (04 (t1) 04 (t)0_(t3)0_(t4)) (5.88)

i.e., no changes need to be made to normally order the 4-operator product inthe (... ). Let us consider atime
ordering where thisis not the case: the ordering t; > t3 > t, > t4. Then,

(:04.(t1) 04 (t2)0-(t3)0-(t4):) = (0,.(62) 04 (t1)0_(t3)0_(t4)) (5.89)

If we imagine now performing the integration implied by Eq. (5.70) for this particular time ordering, we find that
upon changing the order of integration from dt, dt,dt;dt, to dt,dt,;dt;dt, (without changing the integration
bounds), that the result of the integrationisjust W, (z, 0, 7, 0). Note that the variables t;, t,, t3 and t, are only
dummy variables, and one can relabel t, ast; and t; and t, to further highlight the connection.

We aso note that complex conjugation of the operator expectation (... ) takes the Hermitian conjugate of the 4-

operator product inside. Consider W; (0,7, 7, 0), which evaluates Eq. (5.70) intheregimet, > t3 > t; > t4. The

operator expectation is normally ordered asin Eq. (5.88). Then, taking the complex conjugate, W;*(0, 7, 7, 0)

again evaluates Eq. (5.70), but with anew integrand (o, (t4) o, (t3)o_(t;)o_(t;))e?s Cr+tz+ts+ta) (gil| with the

timeordering t, > t3 > t; > t4). Then, if werelabel the dummy integration variables in the following way:
t4_)t1, t3 _>t2, tz _>t3, tl_)t4
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we seethat Wy (0, 7, 7, 0) in fact evaluates Eq. (5.70) with thetime ordering t3 > t, >ty > t;.

The normal ordering and complex conjugation just mentioned alow us to extend our 3 master cases to cover all
24 time orderings. Each master case covers 4 time orderings by taking advantage of normal ordering , which
extends to 8 time orderings by taking the complex conjugate of each. Given that there are 3 master cases, we get
8 x 3 = 24 time orderingsin total, without any repetitions. To make this explicit, we now give atable showing
all 24 time orderings, and the appropriate function with which to evaluate each. The 3 master cases are indicated
in bold. For convenience, wejust providethet subscripts—i.e., 1 > 2 >3 > 4 meanst; > t, > t3 > t,.

Time ordering

Relevant W -function

Time ordering

Relevant W -function

1>2>3>4 W5(z,0,7,0) 3>1>2>4 W5 (z,0,7,0)
1>2>4>4 Ws5(z,0,0,7) 3>1>4>2 Wi (z,0,7,0)
1>3>2>4 Wi(z,0,7,0) 3>2>1>4 w5 (0,1,7,0)
1>3>4>2 W,(z,0,1,0) 3>2>4>1 wy(0,1,7,0)
1>4>2>3 Wi (7,0,0,7) 3>4>1>2 W3 (z,0,7,0)
1>4>3>2 W5(t,0,0,7) 3>4>2>1 w3 (0,1,7,0)
2>1>3>4 W3(0,1,7,0) 4>1>2>3 W5 (z,0,0,7)
2>1>4>3 W3(0,7,0,7) 4>1>3>2 Wi (z,0,0,7)
2>3>1>4 W4(0,7,7,0) 4>2>1>3 w5 (0,1,0,7)
2>3>4>1 W,(0,7,7,0) 4>2>3>1 wi(0,1,0,1)
2>4>3>1 W,(0,7,0,7) 4>3>1>2 W3 (z,0,0,7)
2>4>1>3 w1(0,7,0,7) 4>3>2>1 w3(0,1,0,7)

The corréation function can then be calculated succinctly as

4
(&P ()Mt ()L (T)EL, (0))ss = Z [W, (0,7,7,0) + W, (0,7,0,7) + W, (z,0,7,0) + W, (,0,0,7)] + CC

n=1
(5.90)
where CC indicates the complex conjugate of the first term.

Application to Gaussian filtering
There is no difference in the structure of the cal culation when we go over to Gaussian filtering. We find that

(€M)l (v)€L (1)L, (0)),s is given by

C*vh , lim f dty f dt, f dts [ dty o, ()0, (6)0_(65)0(64)spo a0 Tt d(errmta ety
to to to
(5.92)
We need only to redefine our functions S;, S, and S3. We have, for S; (x, y, z, w|a, b, ¢), the function:
C4y12n lim fdtlf dtzf dt3f dt4e—a‘rl—btz—cr3—d((t+x)—t1)2—d((t+y)—t2)2—d((t+z)—t3)2—d((t+w)—t4)2
to to t

(5.92)
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where theintegration isto be doneinthetime ordering t, > t; > t; > t,. Recal that C = \/%. Thet variables
are still defined by Eq. (5.72). Incorporating the time ordering can be done by rewriting the integration as

f dt, f dt, f dt; | dt, (5.93)
to ty t1

t3

Or, interms of the variables 74, 7,, T3 and t,:

Jdt4j dTlf deJ dT3 (594)
to 0 0 0

The integrand becomes, in these variables:
e—atT1—bTy—cT3 —d((t+x)—(14 +t4))2 —d((t+y)—(T1+72+73 +t4))2 —d((t+2)—(T1+72 +t4))2 —d ((t+w)—t4)2 (595)

For S,(x,y,z,wla, b, c), we must evaluate Eq. (5.92) with the time ordering t, > t3 > t, > t;. Theintegral part

should be written
f dtl-f dTlf def dT3 (596)
to 0 0 0

where the t variables are given by Eq. (5.79) now. Theintegrand is
e—aT1—bTy—cT3 —d((t+x)—t )2 —d((t+y)—(T1+12+73 +t1))2 —d((t+2)—(T1+72 +t1))2 —d((t+w)—(14 +t1))2 (597)

Lastly, for S5(x,y,z,w|a, b, ¢), we evaluate Eq. (5.92) with time ordering t, > t; > t3 > t4. Theintegral partis

Jdt4j dTlf deJ dT3 (598)
to 0 0 0

with the t variables given by Eq. (5.84); theintegrand is
e—a‘rl—brz—cr3—d((t+x)—(1:1 +1, +t4))2—d((t+y)—(1'1 +15+13 +t4))2—d((t+z)—(r1 +t4))2—d((t+w)—t4)2 (5_99)

Comparison of the 3 master case integrands given by Egs. (5.95), (5.97) and (5.99) show usthat in fact, once
S1(x,y,z,w|a, b, c) isfound, we have:

S,(x,y,z,wl|a,b,c) =S;(w,y,z,x|a,b,c) (5.100)
S3(x,y,z,wla,b,c) =Si1(z,y,x,w|a,b,c) (5.101)

So our only work is done in evaluating S; (x, y, z, w|a, b, c).

There appearsto be at least some difficulty in evaluating thisintegral. The process (Appendix B) for evaluating
the two-time filtering integral doesn’'t generalise easily to cover the integral here. Looking ahead to Appendix B,
it isnoted that the integral was only possible because we allowed t, — —oo prior to doing the second integration,
rather than taking that limit post-integration. That was not a problem at the time, and it allowed us to make use of
the result in Aside 2 of that Appendix. However, one sees that we cannot do the same thing here, for the lower
bounds (for example, in Eq. (5.93)) are not —0, and must be kept general.

Due to time constraints, we have not performed this integration. The aim of this section has been to outline the
process for calculating the second-order correlation function, showing how it works in the regime of no filtering
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by Alice. For further details, see Appendices B and C of [7], athough note that [7] considers the more genera
case of filtering by Alice, and hence is much more involved than the cal culation presented above. Also note that
we have not used the symbols W and S in the same context as[7].

5.4 Other filtering possibilities

One of the conclusions from our investigations in Gaussian filtering was that a Gaussian filter of larger bandwidth
is capable of providing essentially the same performance as a Lorentzian of smaller bandwidth. There is another
way of achieving asimilar result, and that is by cascading several Lorentzian filters of larger bandwidth to create
an overdl filter of smaller bandwidth. From atheoretical point of view, thisis aso dightly more appealing than
Gaussian filtering because we don't have the problem of an acausal impulse response. We can show briefly how
thisworks.

In frequency space, the rea part of aLorentzian filter having bandwidth yg is

1
w2 5.102
1+ (2) (5102

excluding a multiplicative factor of i arising from our particular Fourier transform (see Eq. (5.38)). The half-

width of thisfilter isprecisely yp.
If we cascade n such filters, of identical half-width yp, the resulting filter is (in frequency space)

1
W z)n (5.103)
(1 + (VB)
which has an overall half-width of
Ve V2 -1 (5.104)

whichissmaller than y; whenn > 1.
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Chapter 6

Conclusions and future directions

Summary of the dissertation

Chapter 1 set forth the structure of the dissertation, and clarified alittle what quantum teleportation actualy is,
distinguishing it clearly from any notions of far-fetched science fiction. With that out of the way, Chapter 2
moved on to look at the original Bennett et al. protocol of [1], this being of historical significance and also key in
highlighting many of the important ingredients in quantum tel eportation. One such ingredient of particular note
was entanglement, which was also explored in detail, before covering Vaidman' s tel eportation protocol for
continuous variables [6].

Chapter 3 set off in adifferent direction altogether, covering many of the unique properties of light describable
only in atrue quantum setting, in preparation for the description of the Furusawa protocol of Chapter 5[2].
Chapter 4 gave the correlation functions for squeezed vacuum fidlds, as generated by an optical parametric
oscillator, and we a so worked through in detail the cal culation of the resonance fluorescence field correlation
functions, both to compute the field quadrature correl ation functions that would be used in Chapter 5, and to
highlight some of the interesting physics behind the calculation, such as the Quantum Regression Theorem.
Chapter 5 contained the bulk of the numerical work in this dissertation. We provided the integrals necessary for
Gaussian filtering in the Furusawa protocol, going on to compare both the vacuum and resonance fluorescence
spectrathat resulted from matched-bandwidth Lorentzian and Gaussian filtering. We then ventured on to explore
how much vacuum noise each filter type letsin, and how well each filter is capable of teleporting the signal part
of the fluorescence spectrum sidepeaks.

We aso covered the details needed to eval uate the second-order correlation function for the resonance
fluorescence fidld, but were unable to put thisinto practice at the time of writing.
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Conclusions

By looking at the vacuum spectra of Chapter 5 (Figs. 6 — 9) we were able to see that Gaussian filtering is more
successful at cutting out vacuum noise in the spectrum wings, compared to Lorentzian filtering of the same half-
width. Hand-in-hand with this, we saw that in tel eporting the resonance fluorescence field, the maximum amount
of vacuum noise let in by a Lorentzian filter is dways greater than that found with a Gaussian filter of the same
half-width (Fig. 18).

Asone may well have expected, we found an inverse relationship between sidepeak lossin the teleported
resonance fluorescence spectrum, and maximum vacuum noise | et in during teleportation —that is, a small
sidepeak loss necessarily went hand-in-hand with alarger amount of vacuum noise et in. However, as was seen
in Fig. 19, the Gaussian filter still performed better than its Lorentzian counterpart — it was seen that for agiven
amount of vacuum noise let in, use of a Gaussian filter resulted in less sidepeak | oss.

The Gaussian filter also performed better when it came to considering the amount of input signal (rather than
vacuum noise) present in the teleported sidepeaks. This was investigated by looking at the sidepeak loss using the
input/output fields Y correlation functions. There we saw that, if one wishes the teleported sidepeak signa (less
any vacuum noise let in) to be some given percentage (<100%) of the input signal, a Gaussian filter of larger half-
width can achieve the same result Lorentzian filtering of a smaller half-wdith. See Fig. 20. Thiswas al so the case
for the total output spectrum (not just itsY correlation); see Fig. 17.

Thefiltering integrals of Egs. (5.18) and (5.21) had derivations that were reasonably involved — see Appendix A.
However, we were able to show analytically that, in certain limits, perfect teleportation can indeed be obtained
with these integrals, as one means of a check on our work (Section 5.2.5). We showed briefly how cascaded
Lorentzian filters afford a means of creating an overall filter of less half-width from filters of larger half-widths.

Future Directions
There are afew extensions of the work done in this report, which we mention briefly here.

The method outlined in Section 5.3 could be properly implemented to look at the tel eported second order
correlation function under Gaussian filtering. It would be interesting to see whether or not the Gaussian’ s ability
to cut out high frequency noise very effectively allows the second order correlation function to be teleported with
better quality than in Lorentzian filtering.

The possibility of using other filter types could be followed up on. We mentioned in Section 5.4 the possibility of
using cascaded Lorentzian filtering. Not only does this generate afilter of smaller overall haf-width from a series
of larger half-width filters, it also gives afilter that falls off faster at higher frequencies than an ordinary
Lorentzian filter, and is not acausal. One could explore first-order and second-order correlation functions for
these.
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Appendices

Appendix A

We give afew properties of the error function here. A good list of error function propertiesis given in [18].

Theerror function is a non-elementary function defined by

NN
erf(z)—\/Ef0 exp(—t*)dt

For small arguments x « 1, the error function can be calculated from

2n+1
erf(x) = ——exp( xZ)Z (2x)

N (2n + D!
2 2x3  4x
—ﬁexp(—x )( +T+E+"'>

The error function has the asymptotic series (asx — o)

erfCo)~ 1 — exp(—x?) Z‘O: (-1)" (2: - D! -+
A

=1_T

The RHS is hence an approximation to the error function for large arguments; we have used the first term of this
seriesin previous sections.

x 2x3 ' 4x5

)2 R )

Theintegral definition for the error function above is valid for complex arguments. In terms of actually
computing its value for complex arguments, it is convenient to split into real and imaginary parts. Write

a+bi
erf(a + ib) = \/—_f exp(—t?)dt
TJo

Upon making the substitution t = (a + ib)u, and writing the resulting complex exponential in terms of cosines
and sines, this becomes

1
erf(a + bi) = %J exp((b2 — az)uz)(aCOS(Zabuz) + bs n(Zabuz))du
+l—f exp((b2 — az)uz) (bCOS(ZabuZ) —as n(ZabuZ))du

which involves only real-valued integrals. Computationally, when required, these integrals were performed
numerically in Matlab. Thiswas done using the quad function which uses adaptive Simpson quadrature, and has a
numerical error of < 107°.
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For purely imaginary arguments:
2

erf(bi) = ib \/_E

1
f exp(b?u?) du
0

Note that our filtering integral Eg. (5.18) involves the terms of the form
y = exp(x) (1 — erf(\/E))
2
where, for example, x = ;’—d. Aninteresting point isthat computational difficulties arise if we attempt to evaluate

y for large x values. Thisis because y then involves the product of alarge and a very small number. We look into
this now.

The function y is definitely not unbounded —in fact asx — oo, we have:

1—ef 1
lim y = limJ= lim —=0

X —00 X —00 eXp(—x) X—0 /17X
where at the second equality, I' Hopitals Rule was used. Below we plot the exact function y, and also its
approximation (made asin Eq. (5.52)), whichisy = 1/v/mx.
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Figure 23: The function y = exp(x) (1 - erf(\/E)) is in blue. Computationally, it behaves anomalously around x = 28 and above. The
approximation y = 1/+/mx to this function is shown in green. A close-up of the anomalous behaviour region is shown on the right.

One can see that for values of x larger than about 28, the computer is no longer ableto calculate y accurately. At
this point, exp(28) is of the order 1012, while 1 — erf(v/28) is of the order 10714

2
This raises some issues when we are using Gaussi an filtering, when ;’—d isquitelarge. It turns out that thisisnot a
problem that arises when vacuum spectra are considered — this is because terms of the form
exp(x) (1 - erf(\/E)) just mentioned are imaginary for the vacuum and thus are eliminated when we take the

real part — see Eq. (5.36). Difficulties would show up in the imaginary part of that spectrum, however.
For the Moallow triplet, the situation is not so ssimple — heren can be complex, so these terms are not necessarily
eliminated when we consider the spectrum. However, the complex n values that would cause any problems turn
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out to be much smaller than those in the vacuum, so we again do not have this difficulty. It is something to be
aware of, however.

Appendix B
In this appendix we give afull derivation of thefiltering integral Eq. (5.18):

I= lim C? f dt’ dt”exp[—d(t +r—t) —d(t - t")z] exp[-n|t' —t"|]
t

tn—o0
0 0 to

What follows is by no means intended to be the simplest way to perform this integral. We have merely done it

directly.
Theregion of integration isthe semi-infinite shaded region below:
tl
ty
tO t"
Now we have:

' t/—t”’t!zt”
o=t = {t” —tt < t”

Thefirst line of this appliesto the upper triangular part of the region; the second line to the lower part. We split
the integral up over precisely these regions; (excluding the limit for now):

I = Ilower + Iupper
— 2 i 2 N2 " r 1410
=C exp[—d(t+r—t) —d(t—t")" —n(c —t)]dtdt
o ~t'
+C? f f exp [—d(t +r—t) —d(t—t") —y(t - t”)] de"dt’
Expand the argument of the first exponential: —d(t +1 — t)’ —d(t —t")* —(t" — '), and writeit as

[—d](t)? + [2d(t + 1) + 71(t") + [—d(t +1)2 —d(t—t")’ - nt”]

We have written it asaquadratic in t’ asthat is our first integration variable in the first integral .
Likewise for the argument of the second exponential:

—d(t+1—t) —d(t -t —n(t —t7) = [=d](t")* + [2dt + n] (") + |-d(t+7- t): —dt? - nt|
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Aside 1
Thenormalized error functionis

erf(x) = ifxexp(—tz)dt
Vi Jo

The normalization issuch that erf(x) — 1 asx — o, and erf(x) — —1 asx — —co.
We write:

E(m,n) = jn exp(—t?)dt = \/Z—E(erf(n) — erf(m))

With this notation, we find that, for constantsa and b (a > 0):

n n b 2 p2
J exp(—ax? + bx) dx = J exp (—a (x - E) 4a> dx

—eo(2) [ o0(- (-2 ) o

Letting t = Vax ——glves

b
b? RN dt 1 b? b b
J exp( ax? + bx)dx = exp <4a> f\/_ Zg/—exp(—tz)— = —anp <—a> E (\/am - m, \/En - F)

WEe'll use this result now. We get:

© 2
I= sz exp(—d(t +1)?2 —d(t - t”)2 - nt")\/%ex (Qd(t :;) ) )E(f(to),f(t”))dt”

+sz
t

0

, 1 2d 2
exp (—d(t +T1—t )2 —dt? — r]t')\/—zexp <#> E(g(to), g(th)dt’

Thefunctions f and g transform the arguments as described in Aside 1 (i.e. dependent on the values a and b).
Thereisoneintegral remaining; we take out some constants, and rewrite E in terms of the error function:
C* [m ((2d(t+’[)+n)

I==5Ja% 4d

c* m ((2dt+n) )

)f exp(—d(c + )7 — d(t - ') = nt") (er(£(¢")) - erf(F (1)) ) dt”

f exp(—d(t + 7 — t)? — dt? — nt’) (erf(g(t )) - erf(g(to))> de’

to

T a®P\ T 1
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Fully, there are four termsin the integral then:

2 2 o
I= ¢ gexp (—(Zd(t to)+n) )f exp(—d(t + )% —d(t —t")? —nt Herf (t”\/E _2d+D+n 77) dt”

2 4d to 2Vd
2d(t +1) +1 CZ\/E Qd(t+1) +n)?\ ® 5 s o
—erf <t0 d—T>7 Eexp T f exp(—d(t+r) —d(t—t ) —nt )dt

2
+% gexp(m>f exp(—d(t +7—t)> — dtz—nt’)erf(t\/_ Zﬁn)dt'

2
_erf(to\/__Zdt\/—%n)CZ\/;exp<M>f exp(—d(t + v —t)? — dt?> — nt")dt’

Aside 2
For constants a, b, p, q, we have the following integral :

o r aq — bp
| ep(-(ax + b2)eri(p + q)ax =" (J—Tp>

Seereference [16].

It is here that we take the limit t; — —oo, in order to use the result of Aside 2. Sinceerf(x) — —1 asx — —oo,
we get:

2
1:% gexp<(2d(t‘;ﬂ)f exp(—d(t+1)?> —d(t—t)? —nt' )erf(t”\/_

2d(t+71)+7
2Vd )dt

C* m @dt+1)+n) 2 2
*24a (T)f_fxp(‘d“”) Tt
C? [ (2dt + n)? )f zdt +1
4+ | Cexp( =21 exp(—d(t + T —t)? —dt? —nt’ erf(t\/ - )df'
T p( P=d(t 7= t)" —de? =t 2vd
C?® [m (2dt + 1) 2 2 N
_{_7 Eexp (T) f_mexp(—d(t +17— t) —dt* —nt)dt

Thefirst and third terms will require the use of Aside 2; the second and forth are just Gaussian integrals.

We need to complete the square in the exponential arguments:

—d(t+1)* —d(t - t”)2 -t = [—d](t”)2 + [2dt —n]t" + [-dt? — d(t + 7)?]
. 2dt—m\*  (2dt —n)?
"_d(t 24 ) MY
Thisisfor thefirst and second terms. For the third and forth terms:

—dt? —d(t +1)?

—d(t+7— t')2 —dt? —nt' = [—d](t')2 + [2d(t + 1) —n]t' —dt? — d(t + 7)?

_ , 2d(t+1D) -1\ (Qd(t+1) —n)?
__d<t 2 ) * 4d

—dt? —d(t + 1)
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Hence:

c* m (2d(t + 1) +1n)? + (2dt — n)? ) )
1—7 Eexp( d —dt —d(t+r)>x
oo . 2dt—n 2) ( } 2d(t+r)+n> y
exp( —(Vat"— ) erf(t'Vd - ——————)dt
f_w p( ( 2Vd 2Vd
Cc* d(t + 1) +n)* + (2dt — n)? , )\ (7 ,2dt —mA L,
+5 EeXp< 1 —dt —d(t+r)>f_wexp(—(\/3t— = ))dt
c? 2d(t + 1) —n)? + (2dt +1n)?
_{_7 gexp(( t+7) Z-)d ( n) —dtz—d(t+‘[)2>>(

& 2d(t+ 1) -\ oo 2dt+ny
f_wexp(—<\/_t —T> )erf(t\/_—ﬁ)dt

ct [m (2d(t + 1) — n)? + (2dt + n)? ® co2d(t+) -0\
+= Eexp( 1 —dtz—d(t+r)2>f_wexp<—(\/_t —T> )dt

Theintegrals are now in the form of Aside 2; the Gaussian integrals require the result

Jwexp(—(ax + b)?)dx = g

fora > 0.

We find:

c? [m n® N 1 (-2d(t+1)—7n 2dt—n
1 —7\/£exp<ﬁ+nr>\/—zerf m( 5 + 5 >

2@ ([ N 1 (=2dt—n 2d(t+1)-7
+7J£ex"<ﬁ’"f>v_ze”<m< 2 2 >>

Final simplification of the ‘erf’ arguments gives.

I= %exp <7272 + 77T> [erf (_(f/;_; 77) + 1] + —exp(nz 77T> [erf (d\/z;ﬂ) + 1]

Slight rearrangements may be made using the fact that the error function isodd: erf(—x) = —erf(x).
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Appendix C

We here give the full solutions to Egs. (5.61)-(5.64). These are also evaluated in [7], where Laplace Transforms
were used instead to acquire exactly the same solutions. We follow the notational convention outlined there.
Define the following vectors, each having length 4:

A vector of time-dependent exponentials:
yt ( 3y ) ( 3y )
E = [1 exp(——z) exp( 7 +6)t)] exp Y —Jt

Assorted vectors of constants:

F‘=:¢z(;—fyz) 0 Wﬁyz)(%y(yz‘%)“s) Wﬁyz)(‘%y(yz‘%)“g)]

P =l © w30 wmarrs (3 -0)

¢t =[o 5 ;G+%) 2G-%)
B L (1 (e oy e S ) [ (e )
1=lo 0 B20 5+ L) S2as) (-1

=57 e GG (-7 -2-9) sarmGoG(r+9)-o)

By forming the inner product (without taking complex conjugates) of each of these with the vector of
exponentias E, we define 7 functions:

4 4
f©=) FE fi®=) FE,
n=1 n=1

4

4
9= GiE, g.()=) GiE,
n=1

n=1

h(t) = iHnEn, i) = i Ik, J(0) = iJnEn
n=1 n=1 n=1
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Finally, we get solutions:
X1(®) = [-f2(O1X11(0) + [/ (O]X22(0) + [g-(©)]1X12(0) + [g+(©)]X71 (0)
X12(©) = [~ (©1X11(0) + [+ (©)]X22(0) + [g+(©)]X12(0) + [g-(£)]X21(0)
Of course, we seethat [X;, (t)]T = X, (t) as expected. Additionally,
X22(t) = X11(6) = [A()]X11(0) + [ ()] X22(0) + [i(©)]X12(0) + [—i(£)]X21 (0)
X22(8) + X11(8) = X32(0) + X1, (0)
These provide us with full solutions to Egs. (5.61)-(5.64).

and

Appendix D

Here we give the coefficients P(,?, Plj(i) and Pz](l?;) givenin Egs. (5.71), (5.78) and (5.83). See [7]. We have:

1 Y 1 v?
@ _ ( +__ +)
Py =|5F G Gl I
gk —\2 <\/ Trrz LD+ ol )

+( G(1+H) F—F—) LY o] v G
2" AW D A R S T

p® = (1F-G-+1G+1) (1+H,) + L v I
il S b i \/_1+Y2 21+Yv2k

( T(1+H)-FF ) LA v G
V21+Y2'kF T 21 4y?

p® = <1F G+ = GI) LY (1+H)+1 v’ I
gk = \3 V21+7Y2 214yt

+( G+(1+H)+F—F—) LY gl i G
2" 7o VZ1+YZE T21 427k
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