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Abstract. Genome-wide assocation studies have often been carried out by meta-analysis
rather than by pooling individual-level data. For one-dimensional parameter estimates
and the corresponding tests of association these meta-analyses lead to essentially no loss
of information relative to pooling individual data. The situation is different for multi-
parameter tests, such as the omnidirectional rare-variant tests being used in resequencing
studies. In this paper we consider one popular rare-variant test, a version of the sequence
kernel association test. We show that meta-analyses based on the p-value or test statis-
tic from each contributing study are importantly less efficient than an analysis pooling
individual data, but that a more sophisticated meta-analysis retains full efficiency. The
meta-analysis is based on a reformulation of the test that links it to tests used in survey
analysis.
Keywords: Rao-Scott test; score test; sequence kernel association test; genetic epidemiol-
ogy; DNA sequencing

1. Introduction

Many large genome-wide association studies have been performed by ad hoc international
collaborations that are unwilling or unable to share individual-level genetic data, and so
have used meta-analysis to combine study-specific estimates. In these studies, each test
or estimate is typically for the additive component of the genetic association between
phenotype and a single SNP, a setting where meta-analysis is fully efficient[Lin and Zeng,
2010a,b]. Genetic epidemiology is now moving on to DNA resequencing studies, which
generate large numbers of very rare sequence variants. It is not possible to test each
variant individually, and many tests for the collective effect of rare variants in an exon,
gene, or set of genes have been developed [eg Wu et al., 2011, Madsen and Browning, 2009,
Hoffman et al., 2010, Morgenthaler and Thilly, 2007, Li and Leal, 2008]. Some of these,
the ‘unidirectional tests’, are still based on a one-dimensional summary statistic, and can
be written as score tests for a single regression parameter[Lin and Tang, 2011], leading to
fully-efficient meta-analyses. Other tests are intended to detect any combination of positive
and negative effects. These have sometimes been called ‘bidirectional’ tests; we prefer the
term ‘omnidirectional’ to emphasize that the test is sensitive to departures from the null
in any direction in a high-dimensional space of possible alternatives.
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For the omnidirectional tests, the test statistic is typically not even asymptotically a suf-
ficient statistic and there can be substantial information loss in meta-analysis. In this
paper we consider the variance-component score test case of the sequence kernel associa-
tion test[SKAT, Wu et al., 2011], and show that meta-analysis based on the p-value or the
test statistic loses substantial information, but that a more complicated meta-analysis with
nearly full efficiency is possible. Our proposed meta-analysis requires pooling individual-
variant score statistics and the genotype covariance matrix. The individual-variant test
statistics are routinely shared for meta-analysis in genome-wide association studies, and
the genotype covariance matrix contains no information about genotype:phenotype associ-
ations, so data sharing for these quantities should be no more difficult to arrange than in
GWAS studies.

In section 2 we formulate the SKAT test in terms of regression and define a meta-analysis.
Section 3 describes some generic approaches to meta-analysis of test statistics or p-values
and compares these to the SKAT meta-analysis in simulation. In section 4 we comment
on the scope for efficient meta-analysis of other rare-variant tests.

2. A regression formulation of the SKAT variance component test

The SKAT variance score test is designed as an omnibus test for a collection of possibly-rare
sequence variants. It was developed as an example of the very general ’sequence kernel
association test’ and also justified as a score test in a random-effects model. There is
another way to formulate the variance component score test that illuminates its relationship
to more familiar omnibus tests and shows how an efficient meta-analysis can be constructed.

Consider the generalized linear model for additive effect of k variants G1, . . . , Gk:

g(E[Y ]) = α+

k∑
i=1

βiGi.

The approach taken in the SKAT variance component test is to model the vector β as a
random sample from an unknown effect-size distribution P , scaled by a variance τ2. If τ2

is zero, the variants have no effect on the phenotype, but if τ2 > 0 there is an effect. Wu
et al. [2011] show that the score test of the null hypothesis τ2 = 0 does not depend on P
and is a special case of their kernel-machine assocation test.

The standard omnibus Wald test for all βi = 0 is based on

β̂V −1β̂T = zR−1z

where V −1 is the covariance matrix of β̂, R is the correlation matrix, and z is the vector
of z-statistics. For rare variants, this covariance matrix is not well estimated, and the
standard asymptotic approximation is likely to be singular In a logistic or survival model,
β̂ is also quite likely to be infinite.
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The problem of poorly-estimated V is an old one in survey statistics, where the effective
degrees of freedom of a large survey may be surprisingly small. For example, a two-year
wave of the National Health and Nutrition Examination Survey (NHANES) has a sample
size of roughly 10,000, but only about 15 degrees of freedom for estimating V .

A solution [Rao and Scott, 1981] is to use a score test, thus avoiding the need for β̂,
and to weight the contributions of each parameter using only the diagonal of the Fisher
information, not the whole matrix. That is, the test statistic is the (weighted) sum of
squares of z-statistics from score tests of each variant taken separately. In linear regression
the score statistic is just the single-variant regression coefficient divided by its standard
error; in logistic regression the score statistic can be computed from a single iteration of
iteratively reweighted least squares.

The simplest form of the SKAT statistic is thus an unweighted sum of squares of per-variant
association tests

Q =

k∑
i=1

z2
i .

This corresponds to the test of Wu et al. [2011] with what they refer to as Madsen–Browning
weights. More generally, the SKAT test incorporates a vector of weights w based on allele
frequency and, in principle, on functional annotation, giving

Q =

k∑
i=1

2pi(1− pi)w2
i z

2
i .

The Madsen–Browning weights are proportional to p
−1/2
i (1 − pi)−1/2, where pi is the ob-

served minor allele frequency for variant i, but Wu et al prefer weights proportional to
(1− pi)24

In the context of rare genetic variants, the impact of using just the diagonal of V̂ −1 for
weighting is that redundant information from correlated SNPs is given more weight in the
SKAT test than in the Wald test. In the survey context the improvement in small-sample
behaviour by using only the diagonal of the Fisher information in weighting is substantial,
even when β̂ and V̂ −1 do exist.

The resulting test statistic would have a scaled χ2
p distribution if the variants were truly

independent and Madsen–Browning weights were used. If the variants are not indepen-
dent, the distribution depends on the correlation matrix. Let C be the observed genotype
covariance matrix (which is proportional to V̂ ), and let w the vector of weights, then the
distribution of Q is

k∑
i=1

z2
i ∼

k∑
i=1

λiχ
2
1
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where λi are the eigenvalues of wCwT . Note that it is not necessary that all the eigenvalues
are non-zero, either theoretically or in practice, and that rescaling the weights w by an
arbitrary factor will rescale the eigenvalues by the square of this factor, resulting in the
same p-value.

It might appear that the instability of the estimate of V makes it impossible for this proce-
dure to work: the individual eigenvalues will certainly not be well-estimated. Considering
the Satterthwaite approximation to the distribution makes the test look more plausible.
The Satterthwaite approximation to the distribution in the simplest case, with Madsen-
Browning weights, is

k∑
i=1

z2
i

·∼ aχ2
q

where

a =
1

k

k∑
i,j=1

r2
ij

and

q =
k2∑k

i,j=1 r
2
ij

.

So, to a good approximation, the asymptotic distribution depends only on the number of
variants observed and the average linkage disequilibrium between variants, both of which
are relatively well estimated.

2.1. Meta-analysis. Computing the SKAT test using our new formulation requires the
estimation of per-variant score test statistics and of the genotype covariance matrix, using
summary statistics from each cohort. In the simplest case of linear regression with no
adjustment variables we proceed in the following steps

(1) Each study computes and shares its genotype covariance matrix Cm. These are
averaged, with weights proportional to the sample size of the study. From the
genotype covariance matrix (or separately), the overall minor allele frequency is
computed for each variant and sent back to the studies. It is important to ensure
that variants not seen in a study are included in the computations, with zero copies,
rather than treated as missing.

(2) The score test statistics are computed as

β̂im =

∑nm
j=1GimjYmj

2nmpi(1− pi)

s2
im =

1

nm
σ̂2
m2pi(1− pi)
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where Gimj and Ymj are the genotype and phenotype for individual j, study m, and
variant i; nm is the sample size in study m and σ̂2

m is the variance of the phenotype.

That is, the variance and the denominator of β̂ are computed using the full-data
minor allele frequency, not the study-specific minor allele frequency. Note that if a
study does not observe variant i, the regression coefficient reduces to β̂i = 0. The
studies then share β̂i and s2

i .

(3) A standard precision-weighted meta-analysis is done to obtain β̂i and ŝ2
i , and thus

zi.
(4) The test statistic Q is computed as the weighted sum of z2

i and the null distribution
is computed from the averaged genotype covariance matrix.

Modifications for case-control data are straightforward and code is supplied in the Supple-
mentary Information. In the presence of additional adjustment variables the meta-analysis
is less exact, being conservative when the adjustment variables are correlated with pheno-
type and anticonservative when they are correlated with genotype, although empirically it
still agrees closely with results based on complete individual data.

Allowing for sampling weights to accommodate complex multi-phenotype sampling plans
is also straightforward: regression with sampling weights is supported in most general-
purpose statistics packages, and the estimated regression coefficients and standard errors
can be combined exactly as above.

2.2. Numerical analysis issues. Code for the linear combination of χ2
1 is readily avail-

able in R, using an Applied Statistics algorithm that inverts the characteristic func-
tion[Davies, 1980], or a saddlepoint approximation[Kuonen, 1999], both of which are nearly
exact. The CompQuadForm package, function davies() inverts the characteristic function;
the function pchisqsum() in the survey package provide a more consistent interface to
different ways of calculating the tail probabilities. For other languages, the Satterthwaite
approximation described above, which behaves well for moderate p-values but is anticon-
servative in the extreme tail, is trivial to implement and is standard in survey statistics.

Even though the matrix C is positive semi-definite by construction, computing the eigenval-
ues to finite numeric precision may give some small negative values or even complex values.
Complex eigenvalue estimates can be avoided by using an eigenvalue routine designed for
symmetric matrices. Small negative eigenvalues present no problem for computing the
p-value using the Satterthwaite, saddlepoint, or Davies methods. Alternatively, small and
complex eigenvalues can simply be dropped as they do not contribute meaningfully to the
p-value computation. For example, the SKAT software [Wu et al., 2011] uses only the
eigenvalues within a factor of 105 of the largest eigenvalue.
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3. Other approaches to the meta-analysis

Simply adding up SKAT test statistics from each cohort gives a statistic whose distribution
is the sum of the M linear combinations of χ2

1s. That is, if Qm is the SKAT test statistic
in cohort m, and νm is a cohort weight (perhaps proportional to sample size), the overall

test statistic would be Q? =
∑M

m=1 νmQm with sampling distribution

M∑
m=1

km∑
i=1

z2
i ∼

∑
m,i

λimχ
2
1

If there were no overlap in variants between cohorts, Q? would be the same as the SKAT
test statistic based on complete individual data, and also the same as our proposed meta-
analysis. When there is overlap between cohorts, Q? will give a valid, but less powerful
test. For example, in the extreme case where the variants are all independent and have the
same allele frequencies between cohorts, Q? will have the same non-centrality parameter
as Q, but more degrees of freedom.

A very general approach to meta-analysis of complex test statistics is to base the meta-
analysis on p-values, either with a log transformation[Fisher, 1932] or an inverse-normal
transformation[Stouffer et al., 1949]. If pQm is the p-value for cohort m, then

F = −2

M∑
m=1

log pQm

has a χ2
2k null distribution and

S =
M∑

m=1

Φ−1(pQm)

has a Normal null distribution. In both cases weights can be used, eg proportional to square
root of sample size; the inverse-normal transformation still gives a Normal null distribution
and the log transformation gives a linear combination of χ2 distributions as the null.

To compare these meta-analysis approaches with our proposed SKAT meta-analysis we
conducted a simulation study. We simulated 40kB of DNA sequence for each of 4000
people using MaCS[Chen et al., 2009], dropped variants with minor allele frequency over
1%, and divided the data into three cohorts of size 1000, 2000, and 1000. Half the variants
had no effect, for the other half true genotype effects were simulated from the Beta(1,25)
distribution corresponding to the default weights for the SKAT test, and randomly assigned
positive or negative signs. Phenotypes were generated according to a Normal distribution,
and in addition to the genotype effects there was a cohort mean of (0, 0.2, 0.4) for the
three cohorts respectively. The simulations were repeated 5000 times.

We compared the SKAT test on complete data, adjusted for cohort, the proposed meta-
analysis, the meta-analysis based on Q? with νm = (1, 2, 1), a normal transformation of
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p-values with weights (1,
√

2, 1), and log transformations without weights and with weights
(1, 2, 1). The saddlepoint approximation was used for the linear combination of χ2 in all
cases. The results are in Table 1.

Table 1. Simulated power of SKAT test on full data, the proposed meta-
analysis, and four meta-analyses using only the per-study test statistic or
p-value. Based on 5000 simulations, 4000 individuals in three cohorts, and
157 variants with minor allele frequency less than 1% simulated using MaCS

Power
at α = 0.001 at α = 0.01 at α = 0.05

SKAT test 0.09 0.22 0.41
proposed meta-analysis 0.09 0.22 0.41
sum of test statistics (Q?) 0.03 0.12 0.28
weighted inverse-normal transform 0.04 0.13 0.27
log transform 0.03 0.11 0.26
weighted log transform 0.03 0.12 0.28

The simulation shows that our proposed meta-analysis does retain essentially all the in-
formation in the data, and that the techniques based on only the test statistic or p-value
from individual studies are substantially less efficient. It is interesting that the power is so
similar for the four less-efficient techniques; the differences shown in the table are larger
than the Monte Carlo error but are small in practical terms.

Table 2. Simulated power of SKAT test adjusted for principal components,
on full data, the proposed meta-analysis, and four meta-analyses using only
the per-study test statistic or p-value. Based on 5000 simulations, 4000
individuals in three cohorts, and 157 variants with minor allele frequency
less than 1% simulated using MaCS, 3500 variants used to compute principal
components.

Power
at α = 0.001 at α = 0.01 at α = 0.05

SKAT test 0.13 0.26 0.46
proposed meta-analysis 0.12 0.25 0.45
sum of test statistics 0.07 0.16 0.33
weighted inverse-normal transform 0.08 0.20 0.37
log transform 0.08 0.18 0.34
weighted log transform 0.06 0.17 0.35

To investigate the impact of other adjustment variables we simulated 400kB of DNA se-
quence for each of 4000 people using MaCS [Chen et al., 2009] and computed five principal
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Figure 1. Agreement of complete-data and meta-analysis p-values (on
− log10 p scale), in analysis adjusted for study and five study-specific prin-
cipal components of genetic variation

components of genetic variation. We then dropped variants with minor allele frequency
over 1%, and divided the data from the first 157 of the remaining rare variants, matching
the number used in the previous simulation, into three cohorts of size 1000, 2000, and
1000. Phenotypes were generated the same way as in the previous simulation, and again
we used 5000 repetitions. Table 2 again shows very good agreement between the SKAT
test on complete data and the proposed meta-analysis, and the power loss from using only
the test statistic or p-value. Figure 1 plots the − log10 p-value from the complete-data test
and the meta-analysis, showing that the agreement is good uniformly, not just on average.

4. Discussion

We have shown that the loss of efficiency from meta-analysis based only on p-values can
be substantial for the omnidirectional SKAT variance component test, in contrast to the
situation with one-dimensional parameters and tests familiar from GWAS and clinical-trial
meta-analysis. We have also shown how the SKAT variance component score test can be
meta-analyzed without without loss of efficiency, sharing only the sort of information that
is routinely shared in GWAS analyses.
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Our paper does not provide a general approach to efficient meta-analysis for other multi-
variant test statistics, and we do not believe such an approach exists in general. The loss
of power we have demonstrated is likely to be greater for tests based on model selection,
shrinkage, or cross-validation if they are run without special tuning. These tests attempt to
optimize a bias:variance tradeoff within the individual study, but since meta-analysis will
tend to reduce variance but not bias, the optimal bias:variance tradeoff will be different
for estimates intended for meta-analysis.

In general, efficient analysis of DNA sequence data will require either careful attention to
constructing estimators that have finite-dimensional sufficient statistics, or a more liberal
approach to data pooling.
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