Elastic scattering by planar fractures

Thomas E. Blum1, Roel Snieder2, Kasper van Wijk1, and Mark E. Willis3

1Physical Acoustics Lab
Boise State University
Boise, ID

2Center for Wave Phenomena
Colorado School of Mines
Golden, CO

3Formerly at ConocoPhillips, Houston, TX,
now at Halliburton, Houston, TX

September 21, 2011
Outline

1. Introduction
2. Scattering by a plane crack
3. Laboratory experiments
4. Direct excitation
Faults and fractures

- Controls fluid flow: hydrocarbons, water, magma...
- Characterization of fracture properties with elastic waves
- Active or passive monitoring

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis Elastic scattering by planar fractures
Theoretical expression and laboratory modeling

- Single fracture
Theoretical expression and laboratory modeling

- Single fracture
- Linear-slip model: \([u_i] = \eta_i T_r \), with \([u] \) displacement discontinuity, \(\eta \) compliance \((1/\text{stiffness})\) and \(T \) traction
Theoretical expression and laboratory modeling

- Single fracture
- Linear-slip model: \([u_i] = \eta r T r\), with \([u]\) displacement discontinuity, \(\eta\) compliance (1/stiffness) and \(T\) traction
- Born approximation: scattered field small compared to incident field
Single fracture

Linear-slip model: \([u_i] = \eta r T_r \), with \([u]\) displacement discontinuity, \(\eta\) compliance (1/stiffness) and \(T\) traction

Born approximation: scattered field small compared to incident field

Frequency domain: \(f(t) = \int F(\omega) e^{-i\omega t} d\omega \)
Single fracture

Linear-slip model: \([u_i] = \eta ri T_r\), with \([u]\) displacement discontinuity, \(\eta\) compliance (1/stiffness) and \(T\) traction

Born approximation: scattered field small compared to incident field

Frequency domain: \(f(t) = \int F(\omega)e^{-i\omega t}d\omega\)

Previous work: small fractures \(\Rightarrow\) effective medium (Crampin, 1981; Hudson, 1981), or large fractures \(\Rightarrow\) reflection coefficients (Pyrak-Nolte et al., 1990; 1992)
Theoretical expression and laboratory modeling

- Fractured plastic samples
- Ultrasonic frequencies (100 kHz - 10 MHz) \(\Rightarrow \lambda \approx 10^{-4} - 10^{-2} \text{ m} \)
- Laser generation and detection of body waves

Units are cm
Ultrasonic laser receiver

- Wide bandwidth
- Absolute displacement
- Non-contact and small footprint compared to the wavelength
- No moving parts
- Scanning system
Decomposition of the compliance η:

$$\eta_{ij} = \eta_N f_i f_j + \eta_T (\delta_{ij} - f_i f_j)$$

- σ stress
- ω angular frequency
- α P-wave velocity
- ρ density of the material
- k_α wavenumber
- R distance to the fracture
Decomposition of the compliance η:

$$
\eta_{ij} = \eta_N f_i f_j + \eta_T (\delta_{ij} - f_i f_j)
$$

Displacement as a function of the scattering amplitude:

$$
u_n^{(P)}(x) = f_{PP}(\eta) e^{i k_\alpha R} m_n$

- σ: stress
- ω: angular frequency
- α: P-wave velocity
- ρ: density of the material
- k_α: wavenumber
- R: distance to the fracture
Scattering amplitude of a circular plane crack

For the experimental geometry:

\[
f_{P, \rho}(\psi, \theta) = \frac{\omega a}{2 \rho \alpha^3 (\sin \psi - \sin \theta)} J_1 \left(\frac{\omega a}{\alpha} (\sin \psi - \sin \theta) \right) \times \left[\eta_N \left\{ (\lambda + \mu)^2 + (\cos 2\psi + \cos 2\theta)(\lambda + \mu)\mu + \mu^2 (\cos 2\psi \cos 2\theta) \right\} + \eta_T \mu^2 (\sin 2\psi \sin 2\theta) \right].
\]

⇒ term in \(\eta_N \), and term in \(\eta_T \) non-zero for \(\psi \neq 0 \)

\(\omega \) angular frequency
\(\alpha \) P-wave velocity
\(\rho \) density of the material
\(\lambda, \mu \) Lamé parameters
\(a \) fracture radius
Experimental setup

- Sample: PMMA cylinder (transparent plastic material), 150 mm high x 50.8 mm diameter
- Piezoelectric transducer source, 5 MHz, 400 V pulse
- Laser ultrasonic receiver: wide bandwidth (20 kHz – 20 MHz), absolute vertical displacement, small footprint, sensitivity in Å
- Fixed source-fracture angle ψ and moving receiver (θ changes)
Experimental setup: geometry

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures
Non-fractured sample

- velocities $\alpha = 2600$ m/s and $\beta = 1400$ m/s
- $\rho = 1190$ kg/m3 \Rightarrow Lamé parameters $\lambda = 3.4$ GPa and $\mu = 2.3$ GPa
Non-fractured sample

- velocities $\alpha = 2600$ m/s and $\beta = 1400$ m/s
- $\rho = 1190$ kg/m3 \Rightarrow Lamé parameters $\lambda = 3.4$ GPa and $\mu = 2.3$ GPa
- $f-k$ filter to remove surface waves
Fractured sample: data

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures
Fractured sample: data

Time (µs)

90 180 270 360

Displacement (nm)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Scattered P

Top view

\psi = 0

PZT source

\psi = 50°

PZT source
Fractured sample: scattering amplitudes, $\psi = 0^\circ$

Influence of η_N: experimental amplitude
Fractured sample: scattering amplitudes, $\psi = 0^\circ$

Influence of η_N:

experimental amplitude

$\eta_N = 10^{-11}$ m/Pa
Fractured sample: scattering amplitudes, $\psi = 0^\circ$

Influence of η_N:
- Experimental amplitude

$\eta_N = 10^{-11} \text{ m/Pa}$

$\eta_N = 0.5 \times 10^{-11} \text{ m/Pa}$
Fractured sample: scattering amplitudes, $\psi = 0^\circ$

Influence of η_N:
- experimental amplitude
 - $\eta_N = 10^{-11}$ m/Pa
 - $\eta_N = 0.5 \times 10^{-11}$ m/Pa
 - $\eta_N = 2 \times 10^{-11}$ m/Pa
Fractured sample: scattering amplitudes, $\psi = 50^\circ$

Influence of η_T:
experimental amplitude

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures
Fractured sample: scattering amplitudes, $\psi = 50^\circ$

Influence of η_T:
experimental amplitude

$\eta_T = 10^{-12}$ m/Pa
Fractured sample: scattering amplitudes, $\psi = 50^\circ$

Influence of η_T:
experimental amplitude

$\eta_T = 10^{-12}$ m/Pa

$\eta_T = 10^{-13}$ m/Pa
Fractured sample: scattering amplitudes, $\psi = 50^\circ$

Influence of η_T:

- Experimental amplitude
 - $\eta_T = 10^{-12}$ m/Pa
 - $\eta_T = 10^{-13}$ m/Pa
 - $\eta_T = 10^{-11}$ m/Pa
Fracture scattering: summary

- Analytic expression for the scattering amplitude
- Good agreement between theory and laboratory data
- Estimation of the compliance $\eta_N \approx 10^{-11}$ m/Pa
- Same range of compliance as found in the literature (Pyrak-Nolte et al., 1990, Worthington, 2007)
- Low sensitivity to η_T
Direct excitation of a fracture
Experimental setup

- Same fractured sample
- Direct excitation by laser-induced thermal expansion
- Pulsed infrared laser source
Elastic scattering by planar fractures

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Results
Results

Elastic scattering by planar fractures

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis
Results

Surface excitation

Direct excitation

Laser noise

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures
Tip diffractions \Rightarrow radius estimation $a = 3.5$ mm

Elastic scattering by planar fractures
Tip diffractions \Rightarrow radius estimation $a = 3.5$ mm

T. E. Blum, R. Snieder, K. van Wijk, M. E. Willis

Elastic scattering by planar fractures
We thank ConocoPhillips, especially Phil Anno, and Samik Sil for supporting this research. We also thank John Scales and Filippo Broggini from the Colorado School of Mines and fellow members of the Physical Acoustics Laboratory at Boise State University for their constructive ideas and comments.

www.earth.boisestate.edu/pal