Likelihood based Clustering via Finite Mixtures

Using adjacent-categories logit model for ordinal data

Lingyu Li*, A/Prof Ivy Liu, A/Prof Richard Arnold
Victoria University of Wellington, New Zealand
lilingyunz@hotmail.com

Introduction

• Consider a questionnaire response, rows as the observations, columns as the questions.
• Data is formed into a n x m matrix with
 \[Y_{ij} = k, \] if individual i answered k on question j;
 \[k = 1, 2, \ldots, q \]
• Response is all ordinal which has the same number of categories q.
• The suggested model adjacent-categories logit model is for ordinal response variables.
• Row clustering assumes rows are from R number of clusters; column clustering assumes columns are from C number of clusters.
• The goal is to cluster rows into different clusters if it is row clustering; to cluster columns into different clusters for column clustering; to cluster rows and columns simultaneously for bi-clustering.
• Finite mixtures are a successful way to do clustering analysis.
• Need to estimate the parameters for the model via EM algorithm [2].

Ordinal Data

• In statistics, a variable consists of an ordinal scale is called an ordinal variable [1].
• Examples of ordinal variables:
 - Family spending on food: high, medium, low
 - Degree: high school, college, undergraduate, master, PhD
 - How often do people do exercise: never, rarely, occasionally, often

Adjacent-categories logit models

• In this model, the probability that \(Y_{ij} \) takes category k is characterized by the following log odds:
 \[
 \log \left(\frac{P(Y_{ij} = k|x_{ij})}{P(Y_{ij} = k - 1|x_{ij})} \right) = \mu_k + \beta_x x_{ij},
 \]
 \[i = 1, \ldots, n, \quad j = 1, \ldots, m, \quad k = 2, \ldots, q. \]

The vector \(x_{ij} \) is a set of predictor variables which can be categorical or continuous. However, the vector of parameters \(\beta \) represents the effects of \(x \) on the log odds of the response variable for the category \(k \) relative to the category \(k - 1 \) instead of the baseline category. We also restrict \(\mu_1 = 0 \) to be sure of identifiability.

Column Clustering

• Columns are assumed to come from any of c₁, c₂, ..., C column groups with probabilities \(\pi_{c_1}, \pi_{c_2}, ..., \pi_c \).
• That is, we assume the columns come from a finite mixture with C components where both C and the column-cluster proportions \(\pi_c \) are unknown.
• Note also that \(C < m \) and \(\sum_{c=1}^{C} \pi_c = 1 \), and \(\pi_c \geq 0 \).
• Let \(R(Y_{ij} = k|j \in c) = \theta_{ck} \), which means the probability that observation \(Y_{ij} = k \) given that column \(j \) belongs to column-cluster \(c \).
• The adjacent-categories logit model with column clustering has the form:
 \[
 \log \left(\frac{P(Y_{ij} = k|j \in c)}{P(Y_{ij} = k - 1|j \in c)} \right) = \mu_k + \beta_c,
 \]
 \[i = 1, \ldots, n, \quad c = 1, \ldots, C, \quad k = 2, \ldots, q, \]

where \(\mu_k \) is the \(k \)th intercept, \(\beta_c \) is the \(c \)th column-cluster effect.
• Through some mathematical induction, we have:
 \[
 \theta_{ck} = P(Y_{ij} = k|j \in c) = \frac{\exp \left[\mu_k + (k - 1)\beta_c \right]}{\sum_{i=1}^{m} \exp \left[\mu_k + (i - 1)\beta_c \right]},
 \]
 \[i = 1, \ldots, n, \quad c = 1, \ldots, C, \quad k = 1, \ldots, q, \]

where \(\beta_1 = 0, \mu_0 = 0, \) and \(\mu_k = \frac{1}{C} \sum_{c=1}^{C} \mu_c + \mu_1 + \ldots + \mu_k \).
• Assuming independence among the columns and, conditional on the columns, independence over the rows, the likelihood with column-clustering becomes:
 \[
 L(Y) = \prod_{j=1}^{n} \prod_{c=1}^{C} \prod_{k=1}^{q} \left(\pi_c \frac{\exp \left[\mu_k + (k - 1)\beta_c \right]}{\sum_{i=1}^{m} \exp \left[\mu_k + (i - 1)\beta_c \right]} \right).
 \]

Estimation by using EM algorithm

We define the unknown column group memberships through the following indicator latent variables:
\[
X_{c,j} = I(j \in c) - 1 \quad \text{if} \quad c \in \mathcal{C}_{j},
0 \quad \text{otherwise}
\]
where \(j \in \mathcal{C}_{j} \) indicates that column j is in column group \(c \). It follows that:
\[
\sum_{c=1}^{C} X_{c,j} = 1, \quad j = 1, \ldots, m.
\]

Given a value for the number of mixture components C, the EM algorithm proceeds as follows:

\textbf{E step:}
Update \(\mathbf{e} \). Given \(\mathbf{Y} \) and values for \(\pi_0, \mu_0, \beta_0 \), estimate \(\mathbb{E}[X_{c,j}|\mathbf{Y}] \). Recall \(\mathbf{e} = x_{jk} \) as:
\[
\mathbb{E}[X_{c,j}|\mathbf{Y}] = \frac{\gamma_c \exp \left(\sum_{k=1}^{q} (\mu_k + (k - 1)\beta_c) x_{jk} \right)}{\sum_{c=1}^{C} \gamma_c \exp \left(\sum_{k=1}^{q} (\mu_k + (k - 1)\beta_c) x_{jk} \right)}.
\]

\textbf{M step:}
(1) Update the column cluster proportions using:
\[
\gamma_c = \frac{1}{m} \sum_{j=1}^{m} \mathbb{E}[X_{c,j}|\mathbf{Y}], \quad \forall c = 1, \ldots, C
\]
(2) Numerically maximize the complete data log-likelihood:
\[
Q(\theta) = \sum_{j=1}^{m} \sum_{k=1}^{C} \mathbb{E}[\log(P(Y_{ij} = k|\theta))|\mathbf{Y}].
\]
given \(\theta \), from the E-step. We maximize \(Q(\theta) \) to obtain new values for the parameters \(\mu_k, \beta_c \).

A new cycle starts from using the parameters getting from the M-step in the E-step. This process repeats until estimates become stable. There is a risk of convergence to local maxima due to multidimensionality on the likelihood surface, and thus it is important to use several initial values to start the EM algorithm.

Row Clustering

• Row clustering is very similar to column clustering since they are both one-way clustering.
• Setting \(R \) as the number of row clusters in our dataset. Each cluster with proportion \(\pi_1, \pi_2, \ldots, \pi_R \).
• We assume the rows come from a finite mixture with \(R \) components where both \(R \) and \(\pi_r \) are all unknown. Note that \(C < n \) and \(\sum_{r=1}^{R} \pi_r = 1 \).
• Let \(P(Y_{ij} = k|i \in r) = \theta_{rk} \).

\[
\log \left(\frac{P(Y_{ij} = k|i \in r)}{P(Y_{ij} = k - 1|j \in r)} \right) = \mu_k + \beta_r,
\]
\[i = 1, \ldots, n, \quad j = 1, \ldots, m, \quad r = 1, \ldots, R, \quad k = 2, \ldots, q. \]

Simulation

• A simplest adjacent-categories logit model has the form as follows:
 \[
 \log \left(\frac{P(Y_{ij} = k)}{P(Y_{ij} = k - 1)} \right) = \mu_k, \quad k = 2, \ldots, q.
 \]

• Simulation results when the true parameter value \(\mu_2 = 0, \mu_3 = 0.3 \). The number of response in each dataset is \(n \), while the number of simulation datasets (replicates) is \(N \).

Future Work

• Row clustering, column clustering and bi-clustering using adjacent-categories logit model via a finite mixture model.
• Use simulation study and heat maps to evaluate our proposed model on row/column clustering and biclustering.
• Apply model selection methods such as AIC and BIC.
• Evaluate and compare finite mixture clustering models and logistic regression models through an application in Linguistics.
• Using randomised quantile residuals to construct a goodness-of-fit test for fuzzy clustering: Use \(\hat{X}_X \) as the weight, then calculate the weighted randomised quantile residual:
 \[
 E_T = \sum_{i=1}^{n} \hat{X}_X Y_{ij}.
 \]

• Apply LASSO [4] on clustering and compare it with fuzzy clustering via finite mixtures. By solving the quasi-likelihood equations such as GEE [1] subject to
 \[
 \sum_{j=1}^{m} \omega_{jk} | \beta_j - \beta_j^0 | \leq s \quad \text{and} \quad \sum_{j=1}^{m} \beta_j = 0
 \]
where \(\omega_{jk} \) is the weight, \(\beta_j \) is the column effect of the \(j \)th column. If we have very similar values of \(\beta_j \), we can merge them and cluster the corresponding columns into the same clusters.

References

Acknowledgements
This poster presentation for this conference is supported by a Marsden grant from the Royal Society of New Zealand.